Search results
1 – 3 of 3Taicir Mezghani, Fatma Ben Hamadou and Mouna Boujelbène-Abbes
This study aims to investigate the impact of the COVID-19 pandemic on the time-frequency connectedness between green bonds, stock markets and commodities (Brent and Gold), with a…
Abstract
Purpose
This study aims to investigate the impact of the COVID-19 pandemic on the time-frequency connectedness between green bonds, stock markets and commodities (Brent and Gold), with a particular focus on China and its implication for portfolio diversification across different frequencies.
Design/methodology/approach
To this end, the authors implement the frequency connectedness approach of Barunik and Krehlik (2018), followed by the network connectedness before and during the COVID-19 outbreak. In particular, the authors implement more involvement in portfolio allocation and risk management by estimating hedge ratios and hedging effectiveness for green bonds and other financial assets.
Findings
The time-frequency domain spillover results show that gold is the net transmitter of shocks to green bonds in the long run, whereas green Bonds are the net recipients of shocks, irrespective of time horizons. The subsample analysis for the pandemic crisis period shows that green bonds dominate the network connectedness dynamic, mainly because it is strongly connected with the SP500 index and China (SSE). Thus, green bonds may serve as a potential diversifier asset at different time horizons. Likewise, the authors empirically confirm that green bonds have sizeable diversification benefits and hedges for investors towards stock markets and commodity stock pairs before and during the COVID-19 outbreak for both the short and long term. Gold only offers diversification gains in the long run, while Brent does not provide the desired diversification gains. Thus, the study highlights that green bonds are only an effective diversified.
Originality/value
This study contributes to the existing literature by improving the understanding of the interconnectedness and hedging opportunities in short- and long-term horizons between green bonds, commodities and equity markets during the COVID-19 pandemic shock, with a particular focus on China. This study's findings provide more implications regarding portfolio allocation and risk management by estimating hedge ratios and hedging effectiveness.
Details
Keywords
Fatma Ben Hamadou, Taicir Mezghani, Ramzi Zouari and Mouna Boujelbène-Abbes
This study aims to assess the predictive performance of various factors on Bitcoin returns, used for the development of a robust forecasting support decision model using machine…
Abstract
Purpose
This study aims to assess the predictive performance of various factors on Bitcoin returns, used for the development of a robust forecasting support decision model using machine learning techniques, before and during the COVID-19 pandemic. More specifically, the authors investigate the impact of the investor's sentiment on forecasting the Bitcoin returns.
Design/methodology/approach
This method uses feature selection techniques to assess the predictive performance of the different factors on the Bitcoin returns. Subsequently, the authors developed a forecasting model for the Bitcoin returns by evaluating the accuracy of three machine learning models, namely the one-dimensional convolutional neural network (1D-CNN), the bidirectional deep learning long short-term memory (BLSTM) neural networks and the support vector machine model.
Findings
The findings shed light on the importance of the investor's sentiment in enhancing the accuracy of the return forecasts. Furthermore, the investor's sentiment, the economic policy uncertainty (EPU), gold and the financial stress index (FSI) are the top best determinants before the COVID-19 outbreak. However, there was a significant decrease in the importance of financial uncertainty (FSI and EPU) during the COVID-19 pandemic, proving that investors attach much more importance to the sentimental side than to the traditional uncertainty factors. Regarding the forecasting model accuracy, the authors found that the 1D-CNN model showed the lowest prediction error before and during the COVID-19 and outperformed the other models. Therefore, it represents the best-performing algorithm among its tested counterparts, while the BLSTM is the least accurate model.
Practical implications
Moreover, this study contributes to a better understanding relevant for investors and policymakers to better forecast the returns based on a forecasting model, which can be used as a decision-making support tool. Therefore, the obtained results can drive the investors to uncover potential determinants, which forecast the Bitcoin returns. It actually gives more weight to the sentiment rather than financial uncertainties factors during the pandemic crisis.
Originality/value
To the authors’ knowledge, this is the first study to have attempted to construct a novel crypto sentiment measure and use it to develop a Bitcoin forecasting model. In fact, the development of a robust forecasting model, using machine learning techniques, offers a practical value as a decision-making support tool for investment strategies and policy formulation.
Details
Keywords
Taicir Mezghani, Fatma Ben Hamadou and Mouna Boujelbène Abbes
The aim of this study was to investigate the dynamic network connectedness between stock markets and commodity futures and its implications on hedging strategies. Specifically…
Abstract
Purpose
The aim of this study was to investigate the dynamic network connectedness between stock markets and commodity futures and its implications on hedging strategies. Specifically, the authors studied the impact of the 2014 oil price drop and coronavirus disease 2019 (COVID-19) pandemic on risk spillovers and portfolio allocation among stock markets (United States (SP500), China (SSEC), Japan (Nikkei 225), France (CAC40) and Germany (DAX)) and commodities (oil and gold).
Design/methodology/approach
In this study, the authors used the Baba, Engle, Kraft and Kroner–generalized autoregressive conditional heteroskedasticity (BEKK–GARCH) model to estimate shock transmission among the five financial markets and the two commodities. The authors rely on Diebold and Yılmaz (2014, 2015) methodology to construct network-associated measures.
Findings
Relying on the BEKK–GARCH, the authors found that the recent health crisis of COVID-19 intensified the volatility spillovers among stock markets and commodities. Using the dynamic network connectedness, the authors showed that at the 2014 oil price drop and the COVID-19 pandemic shock, the Nikkei225 moderated the transmission of volatility to the majority of markets. During the COVID-19 pandemic, the commodity markets are a net receiver of volatility shocks from stock markets. In addition, the SP500 stock market dominates the network connectedness dynamic during the COVID-19 pandemic, while DAX index is the weakest risk transmitter. Regarding the portfolio allocation and hedging strategies, the study showed that the oil market is the most vulnerable and risky as it was heavily affected by the two crises. The results show that gold is a hedging tool during turmoil periods.
Originality/value
This study contributes to knowledge in this area by improving our understanding of the influence of fluctuations in oil prices on the dynamics of the volatility connection between stock markets and commodities during the COVID-19 pandemic shock. The study’s findings provide more implications regarding portfolio management and hedging strategies that could help investors optimize their portfolios.
Details