Search results

1 – 10 of 275
Open Access
Article
Publication date: 11 August 2023

Niansheng Xi and Hongmin Xu

The study aims to provide a basis for the effective use of safety-related information data and a quantitative assessment way for the occurrence probability of the safety risk such…

Abstract

Purpose

The study aims to provide a basis for the effective use of safety-related information data and a quantitative assessment way for the occurrence probability of the safety risk such as the fatigue fracture of the key components.

Design/methodology/approach

The fatigue crack growth rate is of dispersion, which is often used to accurately describe with probability density. In view of the external dispersion caused by the load, a simple and applicable probability expression of fatigue crack growth rate is adopted based on the fatigue growth theory. Considering the isolation among the pairs of crack length a and crack formation time t (a∼t data) obtained from same kind of structural parts, a statistical analysis approach of t distribution is proposed, which divides the crack length in several segments. Furthermore, according to the compatibility criterion of crack growth, that is, there is statistical development correspondence among a∼t data, the probability model of crack growth rate is established.

Findings

The results show that the crack growth rate in the stable growth stage can be approximately expressed by the crack growth control curve da/dt = Q•a, and the probability density of the crack growth parameter Q represents the external dispersion; t follows two-parameter Weibull distribution in certain a values.

Originality/value

The probability density f(Q) can be estimated by using the probability model of crack growth rate, and a calculation example shows that the estimation method is effective and practical.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 23 November 2023

Xiaochen Ju

This research addresses the diverse characteristics of existing railway steel bridges in China, including variations in construction age, design standards, structural types…

Abstract

Purpose

This research addresses the diverse characteristics of existing railway steel bridges in China, including variations in construction age, design standards, structural types, manufacturing processes, materials and service conditions. It also focuses on prominent defects and challenges related to heavy transportation conditions, particularly low live haul reserves and severe fatigue problems.

Design/methodology/approach

The study encompasses three key aspects: (1) Adaptability assessment: It begins with assessing the suitability of existing railway steel bridges for heavy-haul operations through comprehensive analyses, experiments and engineering applications. (2) Strengthening: To combat frequent crack defects in the vertical stiffener end structure of girder webs, fatigue performance tests and reinforcement scheme experiments were conducted. These experiments included the development of a hot-spot stress S-N curve for this structure, validating the effectiveness of methods like crack stop holes, ultrasonic hammering and flange angle steel. (3) Service life extension: Research on the cruciform welded joint structure (non-fusion transfer type) focused on fatigue performance over the long life cycle. This led to the establishment of a fatigue S-N curve, enhancing Chinese design codes.

Findings

The research achieved several significant outcomes: (1) Successful implementation of strengthening and retrofitting measures on a 64-m single-span double-track railway steel truss girder on an existing heavy-duty line. (2) Post-reinforcement, a substantial 26% to 32% reduction in live haul stress on bridge members was achieved. (3) The strengthening and retrofitting efforts met design expectations, enabling the bridge to accommodate vehicles with a 30-ton axle haul on the railway line.

Originality/value

This research systematically tackles challenges and defects associated with Chinese existing railway steel bridges, providing valuable insights into adaptability assessment, strengthening techniques and service life extension methods. Furthermore, the development of fatigue S-N curves and the successful implementation of bridge enhancements have practical implications for improving the resilience and operational capacity of railway steel bridges in China.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 17 May 2022

Qiwen Xue and Xiuyun Du

In view of the difficulty in determining the key parameters d in the Corten-Dolan model, based on the introduction of small loads, damage degrees and stress states to the…

Abstract

Purpose

In view of the difficulty in determining the key parameters d in the Corten-Dolan model, based on the introduction of small loads, damage degrees and stress states to the Corten-Dolan model and the existing improved model, the sequential effects of the adjacent two-stage load were further considered.

Design/methodology/approach

Two improved Corten-Dolan models were established on the basis of modifying the parameter d by two different methods, namely, increasing stress ratio coefficient as well as considering the effects of loading sequence and damage degree as independent influencing factors respectively. According to the test data of the welded joints of common materials (standard 45 steel), alloy materials (standard 16Mn steel) and Q235B steel, the validity and feasibility of the above two improved models for fatigue life prediction were verified.

Findings

Results show that, compared with the traditional Miner model and the existing Corten-Dolan improved model, the two improved models have higher prediction accuracy in the fatigue life prediction of welding materials whether under two-stage load or multi-stage load.

Originality/value

Because the mathematical expressions of the models are relatively simple and need no multi-layer iterative calculation, it is convenient to predict the fatigue life of welded structure in practical engineering.

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 12 May 2020

Barbara Dziurdzia, Maciej Sobolewski, Janusz Mikołajek and Sebastian Wroński

This paper aims to investigate voiding phenomena in solder joints under thermal pads of light-emitting diodes (LEDs) assembled in mass production environment by reflow soldering…

2469

Abstract

Purpose

This paper aims to investigate voiding phenomena in solder joints under thermal pads of light-emitting diodes (LEDs) assembled in mass production environment by reflow soldering by using seven low-voiding lead-free solder pastes.

Design/methodology/approach

The solder pastes investigated are of SAC305 type, Innolot type or they are especially formulated by the manufacturers on the base of (SnAgCu) alloys with addition of some alloying elements such as Bi, In, Sb and Ti to provide low-void contents. The SnPb solder paste – OM5100 – was used as a benchmark. The solder paste coverage of LED solder pads was chosen as a measure of void contents in solder joints because of common usage of this parameter in industry practice.

Findings

It was found that the highest coverage and, related to it, the least void contents are in solder joints formed with the pastes LMPA-Q and REL61, which are characterized by the coverage of mean value 93.13% [standard deviation (SD) = 2.72%] and 92.93% (SD = 2.77%), respectively. The void diameters reach the mean value equal to 0.061 mm (SD = 0.044 mm) for LMPA-Q and 0.074 mm (SD = 0.052 mm) for REL61. The results are presented in the form of histograms, plot boxes and X-ray images. Some selected solder joints were observed with 3D computer tomography.

Originality/value

The statistical analyses are carried out on the basis of 2D X-ray images with using Origin software. They enable to compare features of various solder pastes recommended by manufacturers as low voiding. The results might be useful for solder paste manufacturers or electronic manufacturing services.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 1 May 2023

Ai Yibo, Zhang Yuanyuan, Cui Hao and Zhang Weidong

This study aims to ensure the operation safety of high speed trains, it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material…

Abstract

Purpose

This study aims to ensure the operation safety of high speed trains, it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time, yet the traditional tests of mechanical property can hardly meet this requirement.

Design/methodology/approach

In this study the acoustic emission (AE) technology is applied in the tensile tests of the gearbox housing material of an high-speed rail (HSR) train, during which the acoustic signatures are acquired for parameter analysis. Afterward, the support vector machine (SVM) classifier is introduced to identify and classify the characteristic parameters extracted, on which basis the SVM is improved and the weighted support vector machine (WSVM) method is applied to effectively reduce the misidentification of the SVM classifier. Through the study of the law of relations between the characteristic values and the tensile life, a degradation model of the gearbox housing material amid tensile is built.

Findings

The results show that the growth rate of the logarithmic hit count of AE signals and that of logarithmic amplitude can well characterize the stage of the material tensile process, and the WSVM method can improve the classification accuracy of the imbalanced data to above 94%. The degradation model built can identify the damage occurred to the HSR gearbox housing material amid the tensile process and predict the service life remains.

Originality/value

The results of this study provide new concepts for the life prediction of tensile samples, and more further tests should be conducted to verify the conclusion of this research.

Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 27 July 2022

Miroslaw Rodzewicz

The purpose of this paper is to present the author’s method of conservative load spectrum (LS) derivation and close-proximity LS extrapolation applying a correction for…

Abstract

Purpose

The purpose of this paper is to present the author’s method of conservative load spectrum (LS) derivation and close-proximity LS extrapolation applying a correction for measurement uncertainty caused by too low sampling frequency or signal noise, which may affect the load histories collected during the flying session and cause some recorded load increments to be lower than the actual values.

Design/methodology/approach

Having in mind that the recorded load signal is burdened with some measurement error, a conservative approach was applied during qualification of the recorded values into 32 discrete load-level intervals and derivation of 32 × 32 half-cycle arrays. A part of each cell value of the half-cycle array was dispersed into the neighboring cells placed above by using a random number generator. It resulted in an increase in the number of load increments, which were one or two intervals higher than those resulting from direct data processing. Such an array was termed a conservative clone of the actual LS. The close-proximity approximation consisted of multiplication of the LSs clones and their aggregation. This way, the LS for extended time of operation was obtained. The whole process was conducted in the MS Excel environment.

Findings

Fatigue life calculated for a chosen element of aircraft structure using conservative LS is about 20%–60% lower than for the actual LS (depending on the applied value of dispersion coefficients used in the procedure of LSs clones generation). It means that such a result gives a bigger safety margin when operational life of the aircraft is estimated or when the fatigue test for an extended operational period is programed based on a limited quantity of data from a flying session.

Originality/value

This paper presents a proposal for a novel, conservative approach to fatigue life estimation based on the short-term LS derived from the load signal recorded during the flying session.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 15 August 2023

Anna Baj-Rogowska

This study aims to explore which of four chosen factors (i.e. privacy concerns, FoMO, self-disclosure and time cost) induce a feeling of strain among Facebook users in terms of…

1825

Abstract

Purpose

This study aims to explore which of four chosen factors (i.e. privacy concerns, FoMO, self-disclosure and time cost) induce a feeling of strain among Facebook users in terms of social media fatigue (SMF), and if this occurs, whether it further influences such outcomes as discontinuance of usage (DoU) and interaction engagement decrement (IED).

Design/methodology/approach

Through an online structured questionnaire, empirical data were gathered to verify the research model, based on the stressor-strain-outcome (SSO) framework. The SEM technique was employed for assessing the hypothesized relationships.

Findings

The findings show that privacy concerns and time cost are strong antecedents of SMF and contribute significantly to its occurrence; while FoMO and self-disclosure do not exhibit any significant influence. Moreover, SMF positively and significantly affects DoU and IED.

Practical implications

This study enhances the existing body of knowledge on SMF and it can help: (1) individuals to be aware of risks and adjust their activities in balance with their well-being, and (2) social media (SM) managers to develop unique strategies to address the specific needs of SM users.

Originality/value

This research contributes to the limited literature on SMF by (1) introducing the concept of IED – as a consequence of SMF, and (2) creating measurement scales for IED.

Details

Information Technology & People, vol. 36 no. 8
Type: Research Article
ISSN: 0959-3845

Keywords

Open Access
Article
Publication date: 6 March 2020

Aqdas Malik, Amandeep Dhir, Puneet Kaur and Aditya Johri

The current study aims to investigate if different measures related to online psychosocial well-being and online behavior correlate with social media fatigue.

27374

Abstract

Purpose

The current study aims to investigate if different measures related to online psychosocial well-being and online behavior correlate with social media fatigue.

Design/methodology/approach

To understand the antecedents and consequences of social media fatigue, the stressor-strain-outcome (SSO) framework is applied. The study consists of two cross-sectional surveys that were organized with young-adult students. Study A was conducted with 1,398 WhatsApp users (aged 19 to 27 years), while Study B was organized with 472 WhatsApp users (aged 18 to 23 years).

Findings

Intensity of social media use was the strongest predictor of social media fatigue. Online social comparison and self-disclosure were also significant predictors of social media fatigue. The findings also suggest that social media fatigue further contributes to a decrease in academic performance.

Originality/value

This study builds upon the limited yet growing body of literature on a theme highly relevant for scholars, practitioners as well as social media users. The current study focuses on examining different causes of social media fatigue induced through the use of a highly popular mobile instant messaging app, WhatsApp. The SSO framework is applied to explore and establish empirical links between stressors and social media fatigue.

Details

Information Technology & People, vol. 34 no. 2
Type: Research Article
ISSN: 0959-3845

Keywords

1 – 10 of 275