Search results

1 – 10 of over 2000
Article
Publication date: 4 December 2017

Yoshihiko Uematsu, Toshifumi Kakiuchi, Akiko Tajiri and Masaki Nakajima

The purpose of this paper is the proposal of fatigue-life-prediction curve for cast aluminum alloy A356-T6 with different casting defect sizes.

Abstract

Purpose

The purpose of this paper is the proposal of fatigue-life-prediction curve for cast aluminum alloy A356-T6 with different casting defect sizes.

Design/methodology/approach

Four kinds of A356-T6 fatigue specimens were sampled from the actual large-scale cast component, where the cooling rates were different. In addition, three kinds of A356 were casted under different casting conditions to simulate different defect sizes in the actual component. Subsequently, rotating bending fatigue tests were conducted using those samples. The maximum sizes of casting defects were quantitatively evaluated through microstructural observation and extreme value statistics. The fatigue limits of all samples were predicted using hardness and defect sizes based on modified Murakami’s equation.

Findings

The modified equation for fatigue limit prediction in A356-T6 was proposed. Fatigue limits were successfully predicted using the proposed equation.

Originality/value

Fatigue limit prediction method using hardness and maximum defect size was limited to steels. This paper proposed the modified method for A356-T6 aluminum alloy with lower elastic modulus. The method was valid for A356-T6 with different defect sizes.

Details

International Journal of Structural Integrity, vol. 8 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 February 2018

Ryutaro Fueki and Koji Takahashi

The purpose of this paper is to estimate the acceptable defect size amax after needle peening (NP) and predict the fatigue limit improvement through the use of NP for an…

Abstract

Purpose

The purpose of this paper is to estimate the acceptable defect size amax after needle peening (NP) and predict the fatigue limit improvement through the use of NP for an austenitic stainless steel welded joint containing an artificial semi-circular slit on a weld toe.

Design/methodology/approach

Residual stress and hardness distribution were measured. Microstructures around the weld toe were observed to clarify the cause for the change in hardness after NP. Finite element method analysis was used to analyze the change in the stress concentration following NP. Fracture mechanics was used to evaluate amax after NP. The fatigue limits before and after NP were predicted by determining amax for several levels of stress amplitude.

Findings

The tensile residual stress induced at the surface of the weld toe prior to NP changed to a compressive residual stress after NP. The residual stress near the surface layer after NP exceeded the yield stress prior to NP due to the increase in yield stress as a result of work hardening as well as the generation of a deformation-induced martensitic structure. The stress concentration was reduced due to the shape improvement caused by NP. The estimation value of amax after NP and the prediction results of fatigue limits were in good agreement with the fatigue test results.

Practical implications

The proposed method is useful in improving the reliability of welded joints used in large steel structures, transportation equipments and industrial machines.

Originality/value

From an engineering perspective, it is essential to estimate amax and the fatigue limit of welded joints with crack-like defects. However, it is unclear as to whether it is possible to predict amax and the effects of NP on the fatigue limit for stainless steel welded joints.

Details

International Journal of Structural Integrity, vol. 9 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 November 2012

A. Krasovskyy and D. Bachmann

The present work aims to deal with a very high cycle fatigue (n=109 cycles) of gas metal arc welded joints, subjected to a multiaxial and non‐proportional loading. Different…

Abstract

Purpose

The present work aims to deal with a very high cycle fatigue (n=109 cycles) of gas metal arc welded joints, subjected to a multiaxial and non‐proportional loading. Different design codes and recommendations can greatly reduce the analysis effort in the design of welded structures providing a suitable balance between computational accuracy and ease of use for many industrial applications. However, various assumptions have to be made in a conservative way making this approach less accurate. This paper deals with a refined fatigue assessment, which considers the most important aspects for welded joints and provides an accurate lifetime prediction of welded structures.

Design/methodology/approach

For an accurate prediction of the total lifetime of welded components the information about the material state and the welding induced residual stresses on weld toes is essential. If the surface condition after welding is poor in this area, which is usually the case, the presence of defects can be assumed and the fatigue crack nucleation process can be neglected. The microstructural threshold for initial crack propagation can be therefore used as a lower bound for the fatigue limit prediction.

Findings

Based on the results from the simulation of a welding process and a post‐weld heat treatment in combination with a fracture mechanics approach, this work successfully attempts to reproduce a fatigue behavior, which was observed at the fatigue tests of the multi‐pass single bevel butt weld.

Originality/value

The proposed approach is able to predict accurately the fatigue strength of welded structures and to achieve the full cost and weight optimization potential for industrial applications.

Details

International Journal of Structural Integrity, vol. 3 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 April 2016

Christopher Sous, Henrik Wünsch, Georg Jacobs and Christoph Broeckmann

The purpose of this paper is to investigate the applicability of the quadratic failure hypothesis (QFH) on journal bearings coated with a white metal sliding layer on the…

Abstract

Purpose

The purpose of this paper is to investigate the applicability of the quadratic failure hypothesis (QFH) on journal bearings coated with a white metal sliding layer on the prediction of safe and unsafe operating conditions. The hypothesis covers operation conditions under static and dynamical loading.

Design/methodology/approach

Material tests and elastohydrodynamic, as well as structural, simulations were conducted to provide the required input data for the failure hypothesis. Component samples were tested to verify the results of the QFH.

Findings

The load bearing capacity of journal bearings was analysed for different operating conditions by the use of the QFH. Results allow for the identification of critical and non-critical loading conditions and are in accordance with component test results.

Originality/value

Today’s design guidelines for journal bearings do not consider a multi-axial stress state and actual stress distribution. The applied hypothesis enables consideration of multiaxiality inside the sliding surface layer, as well as determining the location of bearing fatigue due to material overload.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 November 2012

R.A. Cláudio, J.M. Silva and J. Byrne

This paper aims to present a methodology, based on traditional approaches, to predict the fatigue life and non‐propagating cracks of shot peened components and the damaging effect…

Abstract

Purpose

This paper aims to present a methodology, based on traditional approaches, to predict the fatigue life and non‐propagating cracks of shot peened components and the damaging effect of a scratch created over the treated surface.

Design/methodology/approach

The finite element method is used to determine the actual strain at surface and fracture mechanics parameters calculated from cracks at the surface. The model considers residual stress (in order to introduce the effect of shot peening) and the scratch geometry. The total fatigue life is obtained by adding initiation life, to early and long crack propagation life using appropriate criteria.

Findings

Numerical predictions were compared with previous experimental tests, showing that this method is quite reliable for predicting both fatigue life and non‐propagating cracks of shot peened components, including the effect of damage due to a scratch.

Research limitations/implications

The proposed method provides good results and a clear understanding of the fatigue process, however it requires a considerable amount of both material and shot peening parameters.

Practical implications

The methodology presented in this paper allows the determination of fatigue life and the prediction of non‐propagating cracks for components, including the effects of shot peening and scratch damage. These results can be used to quantify the scratch damage limits of components improved by shot peening.

Originality/value

This paper provides a useful tool for prediction of the effects of shot peening and scratch damage on fatigue life, using traditional approaches.

Details

International Journal of Structural Integrity, vol. 3 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 January 2021

Haijie Wang, Xintian Liu, Que Wu, Xiaolan Wang and Yansong Wang

The purpose of this paper is to obtain a more accurate fatigue life of structures by introducing the surface roughness into fatigue life prediction model.

Abstract

Purpose

The purpose of this paper is to obtain a more accurate fatigue life of structures by introducing the surface roughness into fatigue life prediction model.

Design/methodology/approach

Based on the fatigue life prediction model with surface roughness correction, the shock absorber cylinder is taken as an example to verify the feasibility of the improved method. Based on the load of the shock absorber cylinder during driving, fatigue experiments are performed under longitudinal and lateral forces, respectively. Then, the fatigue life predicted by the modified model is compared with that predicted by the traditional model.

Findings

By comparing with the test results, considering the influence of mean stress, the Manson method is more accurate in life prediction. Then, the modified Manson-Coffin and Manson method with surface roughness is more accurate in life prediction under longitudinal force and lateral forces, respectively. This verifies the feasibility of the improved method with the surface roughness.

Originality/value

The research on the influence of surface roughness on fatigue life can lay the technical foundation for the life prediction of products and have great significance to the quality evaluation of products.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 August 2022

Yingbao He, Jianhui Liu, Feilong Hua, He Zhao and Jie Wang

Under multiaxial random loading, the material stress–strain response is not periodic, which makes it difficult to determine the direction of the critical plane on the material…

Abstract

Purpose

Under multiaxial random loading, the material stress–strain response is not periodic, which makes it difficult to determine the direction of the critical plane on the material. Meanwhile, existing methods of constant loading cannot be directly applied to multiaxial random loading; this problem can be solved when an equivalent stress transformation method is used.

Design/methodology/approach

First, the Liu-Mahadevan critical plane is introduced into multiaxial random fatigue, which is enabled to determine the material's critical plane position under random loading. Then, an equivalent stress transformation method is proposed which can convert random load to constant load. Meanwhile, the ratio of mean stress to yield strength is defined as the new mean stress influence factor, and a new non-proportional additional strengthening factor is proposed by considering the effect of phase differences.

Findings

The proposed model is validated using multiaxial random fatigue test data of TC4 titanium alloy specimens and the results of the proposed model are compared with that based on Miner's rule and BSW model, showing that the proposed method is more accurate.

Originality/value

In this work, a new multiaxial random fatigue life prediction model is proposed based on equivalent stress transformation method, which considers the mean stress effect and the additional strengthening effect. Results show that the predicted fatigue lives given by the proposed model are in well accordance with the tested data.

Details

International Journal of Structural Integrity, vol. 13 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 August 2023

Jianhui Liu, Ziyang Zhang, Longxiang Zhu, Jie Wang and Yingbao He

Due to the limitation of experimental conditions and budget, fatigue data of mechanical components are often scarce in practical engineering, which leads to low reliability of…

Abstract

Purpose

Due to the limitation of experimental conditions and budget, fatigue data of mechanical components are often scarce in practical engineering, which leads to low reliability of fatigue data and reduces the accuracy of fatigue life prediction. Therefore, this study aims to expand the available fatigue data and verify its reliability, enabling the achievement of life prediction analysis at different stress levels.

Design/methodology/approach

First, the principle of fatigue life probability percentiles consistency and the perturbation optimization technique is used to realize the equivalent conversion of small samples fatigue life test data at different stress levels. Meanwhile, checking failure model by fitting the goodness of fit test and proposing a Monte Carlo method based on the data distribution characteristics and a numerical simulation strategy of directional sampling is used to extend equivalent data. Furthermore, the relationship between effective stress and characteristic life is analyzed using a combination of the Weibull distribution and the Stromeyer equation. An iterative sequence is established to obtain predicted life.

Findings

The TC4–DT titanium alloy is selected to assess the accuracy and reliability of the proposed method and the results show that predicted life obtained with the proposed method is within the double dispersion band, indicating high accuracy.

Originality/value

The purpose of this study is to provide a reference for the expansion of small sample fatigue test data, verification of data reliability and prediction of fatigue life data. In addition, the proposed method provides a theoretical basis for engineering applications.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 June 2018

Longbiao Li

This paper aims to predict fatigue life and fatigue limit of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e. unidirectional, cross-ply, 2D-…

Abstract

Purpose

This paper aims to predict fatigue life and fatigue limit of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e. unidirectional, cross-ply, 2D-, 2.5D- and 3D-woven, at room and elevated temperatures.

Design/methodology/approach

Under cyclic loading, matrix multicracking and interface debonding occur upon first loading to fatigue peak stress, and the interface wear appears with increasing cycle number, leading to degradation of the interface shear stress and fibers strength. The relationships between fibers fracture, cycle number, fatigue peak stress and interface wear damage mechanism have been established based on the global load sharing (GLS) criterion. The evolution of fibers broken fraction versus cycle number curves of fiber-reinforced CMCs at room and elevated temperatures have been obtained.

Findings

The predicted fatigue life S–N curve can be divided into two regions, i.e. the Region I controlled by the degradation of interface shear stress and fibers strength and the Region II controlled by the degradation of fibers strength.

Practical/implications

The proposed approach can be used to predict the fatigue life and fatigue limit of unidirectional, cross-ply, 2D-, 2.5D- and 3D-woven CMCs under cyclic loading.

Originality/value

The fatigue damage mechanisms and fibers failure model were combined together to predict the fatigue life and fatigue limit of fiber-reinforced CMCs with different fiber preforms.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 September 2023

Xintian Liu and Muzhou Ma

Scholars mainly propose and establish theoretical models of cumulative fatigue damage for their research fields. This review aims to select the applicable model from many fatigue

Abstract

Purpose

Scholars mainly propose and establish theoretical models of cumulative fatigue damage for their research fields. This review aims to select the applicable model from many fatigue damage models according to the actual situation. However, relatively few models can be generally accepted and widely used.

Design/methodology/approach

This review introduces the development of cumulative damage theory. Then, several typical models are selected from linear and nonlinear cumulative damage models to perform data analyses and obtain the fatigue life for the metal.

Findings

Considering the energy law and strength degradation, the nonlinear fatigue cumulative damage model can better reflect the fatigue damage under constant and multi-stage variable amplitude loading. In the following research, the complex uncertainty of the model in the fatigue damage process can be considered, as well as the combination of advanced machine learning techniques to reduce the prediction error.

Originality/value

This review compares the advantages and disadvantages of various mainstream cumulative damage research methods. It provides a reference for further research into the theories of cumulative fatigue damage.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 2000