Search results

1 – 3 of 3
To view the access options for this content please click here
Article
Publication date: 1 August 2016

David O. Obada, David Dodoo-Arhin, Muhammad Dauda, Fatai O. Anafi, Abdulkarim S. Ahmed, Olusegun A. Ajayi and Ibraheem A. Samotu

This work aims to analyze the effect of mechanical activation on structural disordering (amorphization) in an alumina-silica ceramics system and formation of mullite most…

Abstract

Purpose

This work aims to analyze the effect of mechanical activation on structural disordering (amorphization) in an alumina-silica ceramics system and formation of mullite most notably at a lower temperature using X-ray diffraction (XRD). Also, an objective of this work is to focus on a low-temperature fabrication route for the production of mullite powders.

Design/methodology/approach

A batch composition of kaolin, alumina and silica was manually pre-milled and then mechanically activated in a ball mill for 30 and 60 min. The activated samples were sintered at 1,150°C for a soaking period of 2 h. Mullite formation was characterized by XRD and scanning electron microscopy (SEM).

Findings

It was determined that the mechanical activation increased the quantity of the mullite phase. SEM results revealed that short milling times only helped in mixing of the precursor powders and caused partial agglomeration, while longer milling times, however, resulted in greater agglomeration.

Originality/value

It is noted that, a manual pre-milling of approximately 20 min and a ball milling approach of 60 min milling time can be suggested as the optimum milling time for the temperature decrease succeeded for the production of mullite from the specific stoichiometric batch formed.

Details

World Journal of Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 5 December 2016

David O. Obada, Muhammad Dauda, Fatai O. Anafi, Abdulkarim S. Ahmed and Olusegun A. Ajayi

A structural and textural characterization study has been performed to investigate the adherence of zeolite-based catalyst washcoated onto honey-comb-type cordierite…

Abstract

Purpose

A structural and textural characterization study has been performed to investigate the adherence of zeolite-based catalyst washcoated onto honey-comb-type cordierite monoliths. The supports were characterized by the scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) techniques.

Design/methodology/approach

SEM/EDS provided quantitative estimate of the washcoated monolith as the elemental composition of catalyst coating. The XRD pattern deduced that the zeolite-based catalysts were successfully mounted on the cordierite support, showing the characteristic peaks of zeolites (Zeolite Socony Mobil–5; ZSM-5) at Braggs angles of 7.88°, 8.76°, 23.04°, 23.88° and 24.36°, whereas the characteristic peak of cordierite is seen at a Braggs angle of 10.44°.

Findings

The BET results proved that a monolayer of zeolite may serve the need for surface area and porosity. This was evident in the increase of surface area of washcoated support as against the bare support. The obtained isotherms were of Type IV, illustrating the presence of mesopores. The adsorption and desorption isotherm branches coincided over the interval 0 < P/P0 < 0.50 and 0 < P/P0 < 0.45, showing N2 reversible adsorption for the two samples, respectively.

Originality/value

It was concluded that the composite materials which are ZSM-5 (Si/Al = 25) and precursors of the transition salts of copper, zinc and ceria powders were deposited on the catalyst supports, establishing the success of the coating procedure relative to the adherence of the catalyst compositions on the ceramic support.

Details

World Journal of Engineering, vol. 13 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 23 October 2015

Ibraheem A. Samotu, Fatai O. Anafi, Muhammad Dauda, Abdulkarim S. Ahmed, Raymond B. Bako and David O. Obada

The general-purpose engine lathe is the most basic turning machine tool. As with all lathes, the two basic requirements for turning are a means of holding the workpiece…

Abstract

The general-purpose engine lathe is the most basic turning machine tool. As with all lathes, the two basic requirements for turning are a means of holding the workpiece while it rotates as well as a means of holding cutting tools and moving them relatively to the workpiece. In this paper, we present the results of finite element analysis (FEA) performed to investigate nature of stress and their distribution at optimum point along the two turning tables of a micro-controller based versatile machine tool desktop learning module. Commercial Autodesk Inventor was used to create both three-dimensional (3D) and 2D models as well as performing simulation. Dynamics simulation generated the motion load expected to act on the tables when used for real-life operation which were in turn used to perform the FEA. The motion of the DC stepper motor driving the tables and other parts of the module is designed to be controlled by programmable chips. Before creating FEA simulation for the tables, numerical divergence were prevented by varying the mesh settings to obtain the settings at which the results of the analyses converges which was obtained at 0.03 average element size and 0.04 minimum element size. Finite element analysis carried out on the tables shows that aluminium alloy 4032-T6 chosen will serve in the fabrication of physical prototype. FEA revealed the nature and level of stresses that will be experienced on the tables, it also revealed region where these stresses will concentrate on them. The analysis also estimated the expected weight of the turning tables 1&2 to be 1.23536 and 0.257182 kg respectively and show that the minimum factor of safety was constantly 15 ul within the tables which means that they will not fail during operation.

Details

World Journal of Engineering, vol. 12 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 3 of 3