Search results

1 – 10 of over 1000
Article
Publication date: 26 April 2022

Yunfei Fan, Yilian Zhang, Huang Jie, Tang Yue, Qingzhen Bi and Yuhan Wang

This paper aims to propose a novel model and calibration method to improve the absolute positioning accuracy of a robotic drilling system with secondary encoders and additional…

Abstract

Purpose

This paper aims to propose a novel model and calibration method to improve the absolute positioning accuracy of a robotic drilling system with secondary encoders and additional axis.

Design/methodology/approach

The enhanced rigid-flexible coupling model is developed by considering both kinematic parameters and link flexibility. The kinematic errors of the robot and the additional axis are considered with a model containing 27 parameters. The elastic deformation errors of the robot under self-weight of links and end-effector are estimated with a flexible link model. For calibration, an effective comprehensive calibration method is developed by further considering the coordinate systems parameters of the drilling system and using a two-step process constrained Levenberg–Marquardt identification method.

Findings

Experiments are performed on the robotic drilling system that contains a KUKA KR500 R2830 industrial robot and an additional lifting axis with a laser tracker. The results show that the maximum error and mean error are reduced to 0.311 and 0.136 mm, respectively, which verify the effectiveness of the model and the calibration method.

Originality/value

A novel enhanced rigid-flexible coupling model and a practical comprehensive calibration method are proposed and verified. The experiments results indicate that the absolute positioning accuracy of the system in a large workspace is greatly improved, which is conducive to the application of industrial robots in the field of aerospace assembly.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 July 2016

Wenxue Lu, Lihan Zhang and Fan Bai

The learning ability on critical bargaining information contributes to accelerating construction claim negotiations in the win-win situation. The purpose of this paper is to study…

Abstract

Purpose

The learning ability on critical bargaining information contributes to accelerating construction claim negotiations in the win-win situation. The purpose of this paper is to study how to apply Zeuthen strategy and Bayesian learning to simulate the dynamic bargaining process of claim negotiations with the consideration of discount factor and risk attitude.

Design/methodology/approach

The authors first adopted certainty equivalent method and curve fitting to build a party’s own curve utility function. Taking the opponent’s bottom line as the learning goal, the authors introduced Bayesian learning to refine former predicted linear utility function of the opponent according to every new counteroffer. Both parties’ utility functions were revised by taking discount factors into consideration. Accordingly, the authors developed a bilateral learning model in construction claim negotiations based on Zeuthen strategy.

Findings

The consistency of Zeuthen strategy and the Nash bargaining solution model guarantees the effectiveness of the bilateral learning model. Moreover, the illustrative example verifies the feasibility of this model.

Research limitations/implications

As the authors developed the bilateral learning model by mathematical deduction, scholars are expected to collect empirical cases and compare actual solutions and model solutions in order to modify the model in future studies.

Practical implications

Negotiators could refer to this model to make offers dynamically, which is favorable for the parties to reach an agreement quickly and to avoid the escalation of claims into disputes.

Originality/value

The proposed model provides a supplement to the existing studies on dynamic construction claim negotiations.

Details

Engineering, Construction and Architectural Management, vol. 23 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 July 2015

Jiahuan Du, Qiang Li, Chuanli Qin, Xugang Zhang, Zheng Jin and Xuduo Bai

– The purpose of this paper is to develop nitrogen-enriched carbon (NC) with high conductivity and specific capacitance as electrode materials for supercapacitors.

Abstract

Purpose

The purpose of this paper is to develop nitrogen-enriched carbon (NC) with high conductivity and specific capacitance as electrode materials for supercapacitors.

Design/methodology/approach

Graphene oxide (GO) was synthesized by the modified Hummers–Offeman method. NC was synthesized by carbonization of melamine formaldehyde resin/graphene oxide (MF/GO) composites. Supercapacitors based on Ni(OH)2/Co(OH)2 composites as the positive electrode and NC as the negative electrode were assembled. The electrochemical performances of NC and supercapacitors are studied.

Findings

The results show that obtained NC has high nitrogen content. Compared to NC-GO0 without GO, high conductivity and specific capacitance were obtained for NC with GO due to the introduction of layered GO. The presence of pseudocapacitive interactions between potassium cations and the nitrogen atoms of NC was also proposed. When the weight ratio of GO to MF is 0.013:1, the obtained NC-GO3 has the highest specific capacitance of 154.07 F/g due to GO and its highest content of N-6. When the P of the asymmetric supercapacitor with NC-GO3 as the negative electrode is 1,326.70 W/kg, its Cps and Ep are still 23.84 F/g and 8.48 Wh/Kg, respectively. There is only 4.4 per cent decay in Cps of the supercapacitor over 1,000 cycles.

Research limitations/implications

NC is a suitable electrode material for supercapacitors. The supercapacitors can be used in the field of automobiles and can solve the problems of energy shortage and environmental pollutions.

Originality/value

NC based on MF/GO composites with high nitrogen content and conductivity was novel and its electrochemical properties were excellent.

Details

Pigment & Resin Technology, vol. 44 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 November 2022

Ruizhe Wang, Runsheng Li, Guilan Wang, Mingbo Zhang, Jianwu Huang, Hang Lin and Haiou Zhang

Wire and arc additive manufacturing (WAAM) technology-based cold metal transfer (CMT) to produce large aluminum alloy parts has become more and more popular. In WAAM, wire is the…

Abstract

Purpose

Wire and arc additive manufacturing (WAAM) technology-based cold metal transfer (CMT) to produce large aluminum alloy parts has become more and more popular. In WAAM, wire is the only raw material. The purpose of this paper is to study the effect of wire composition on the microstructure and properties of the ZAlCu5MnCdVA alloy deposited by WAAM.

Design/methodology/approach

Two thin-walled ZAlCu5MnCdVA alloys with different wire compositions were prepared by WAAM. The copper contents were 4.7% (Al-4.7Cu) and 5.0% (Al-5.0Cu), respectively. The microstructure, element distribution and evolution of precipitated phases of the two samples were characterized and analyzed by optical microscopy, scanning electron microscopy and transmission electron microscopy. Hardness and tensile properties of samples were tested, and strengthening mechanism was analyzed in detail.

Findings

The results show that grain sizes of Al-4.7Cu and Al-5.0Cu are less than 40 μm. The average mass fraction of Cu in Al matrix and the number of nanometer scale θ'' and θ' phases are the main factors affecting the tensile properties of Al-Cu alloy. Tensile properties of two materials show different characteristics at room temperature and high temperature. Al-5.0Cu is better at room temperature and Al-4.7Cu is better at high temperature. The yield strength (YS), ultimate tensile strength (UTS) and elongation in the x direction of Al-5.0Cu at room temperature are 451 ± 10.2 MPa, 486 ± 10.2 MPa and 9 ± 0.5%, respectively. The YS, UTS and elongation in the x direction of Al-4.7Cu at high temperature are 290 ± 4.5 MPa, 356 ± 7.0 MPa and 13% ± 0.2%, respectively.

Originality/value

Experiments show that the increase of Cu element can improve the properties at room temperature of the ZAlCu5MnCdVA alloy by WAAM, but its properties at high temperature decrease.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 August 2011

Mehdi Dehghan, Jalil Manafian Heris and Abbas Saadatmandi

The purpose of this paper is to use He's Exp‐function method (EFM) to construct solitary and soliton solutions of the nonlinear evolution equation.

Abstract

Purpose

The purpose of this paper is to use He's Exp‐function method (EFM) to construct solitary and soliton solutions of the nonlinear evolution equation.

Design/methodology/approach

This technique is straightforward and simple to use and is a powerful method to overcome some difficulties in the nonlinear problems.

Findings

This method is developed for searching exact traveling wave solutions of the nonlinear partial differential equations. The EFM presents a wider applicability for handling nonlinear wave equations.

Originality/value

The paper shows that EFM, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving nonlinear evolution equations. Application of EFM to Fitzhugh‐Nagumo equation illustrates its effectiveness.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 August 2020

Kuo-Cheng Kuo, Wen-Min Lu, Qian Long Kweh and Minh-Hieu Le

This study aims to evaluate cargo and eco-efficiency of global container shipping companies (CSCs) and explore the determinants of the CSCs' efficiencies. While the former is…

427

Abstract

Purpose

This study aims to evaluate cargo and eco-efficiency of global container shipping companies (CSCs) and explore the determinants of the CSCs' efficiencies. While the former is derived from the CSCs' operational perspective, the latter highlights environmental issue related to carbon emission reduction.

Design/methodology/approach

In the first stage, a two-stage double bootstrap approach of data envelopment analysis (DEA) is applied to derive bias-corrected cargo and eco-efficiency of the top ten global CSCs under the variable returns to scale assumption. In the second stage, ordinary least squares and truncated regression are applied to examine determinants of the CSCs' efficiencies.

Findings

The DEA results reveal that the cargo efficiency of the CSCs is higher than their eco-efficiency by about 2.6% under variable returns to scale in DEA. However, the bias-corrected results show that the difference is 2.9%. The overall average efficiencies suggest that the CSCs can improve their cargo (eco) efficiency by 6.9% (10.8%). In the second stage, the regression results show that the numbers of ship, return on assets and asset turnover ratio are significantly related to both cargo and eco-efficiencies, whereas the total fleet capacity positively affects cargo efficiency.

Research limitations/implications

The results of this study can help the inefficient CSCs make strategic decisions to improve their performance. For example, their business experience and capacity may be contributing to their efficiencies. However, this study only focuses on the container market among the three main markets, namely, dry bulk, wet bulk and container.

Originality/value

This study highlights an environmental issue in the shipping industry. While CSCs are operating their cargo efficiently in general, they should also put green initiatives into their business operations for the long-term sustainability.

Details

The International Journal of Logistics Management, vol. 31 no. 4
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 7 May 2019

Chuanchu Su and Xizhang Chen

This paper aims to mainly report the impact of torch angle on the dynamic behavior of the weld pool which is recorded and monitored in real time with the aid of a high-speed…

Abstract

Purpose

This paper aims to mainly report the impact of torch angle on the dynamic behavior of the weld pool which is recorded and monitored in real time with the aid of a high-speed camera system. The influence of depositing torch angle on the fluctuation behavior of weld pool and the quality of weld formation are compared and analyzed.

Design/methodology/approach

The FANUC controlled robotic manufacturing system comprised a Fronius cold metal transfer (CMT) Advanced 4000R power source, FANUC robot, water cooling system, wire feeding system and a gas shielding system. An infrared laser was used to illuminate the weld pool for high-speed imaging at 1,000 frames per second with CR600X2 high-speed camera. The high-speed camera was set up a 35 ° angle with the deposition direction to investigate the weld pool flow patterns derived from high-speed video and the effect of torch angles on the first layer of wire additive manufacture-CMT.

Findings

The experimental results demonstrated that different torch angles significantly influence on the deposited morphology, porosity formation rate and weld pool flow.

Originality/value

With regard to the first layer of wire arc additive manufacture of aluminum alloys, the change of torch angle is critical. It is clear that different torch angles significantly influence on the weld morphology, porosity formation and weld pool flow. Furthermore, under different torch angles, the deposited beads will produce different defects. To get well deposited beads, 0-10° torch could be made away from the vertical position of the deposition direction, in which the formation of deposited beads were well and less porosity and other defects.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 April 2021

Jinlei Zhuang, Ruifeng Li, Chuqing Cao, Yunfeng Gao, Ke Wang and Feiyang Wang

This paper aims to propose a measurement principle and a calibration method of measurement system integrated with serial robot and 3D camera to identify its parameters…

Abstract

Purpose

This paper aims to propose a measurement principle and a calibration method of measurement system integrated with serial robot and 3D camera to identify its parameters conveniently and achieve high measurement accuracy.

Design/methodology/approach

A stiffness and kinematic measurement principle of the integrated system is proposed, which considers the influence of robot weight and load weight on measurement accuracy. Then an error model is derived based on the principle that the coordinate of sphere center is invariant, which can simultaneously identify the parameters of joint stiffness, kinematic and hand-eye relationship. Further, considering the errors of the parameters to be calibrated and the measurement error of 3D camera, a method to generate calibration observation data is proposed to validate both calibration accuracy and parameter identification accuracy of calibration method.

Findings

Comparative simulations and experiments of conventional kinematic calibration method and the stiffness and kinematic calibration method proposed in this paper are conducted. The results of the simulations show that the proposed method is more accurate, and the identified values of angle parameters in modified Denavit and Hartenberg model are closer to their real values. Compared with the conventional calibration method in experiments, the proposed method decreases the maximum and mean errors by 19.9% and 13.4%, respectively.

Originality/value

A new measurement principle and a novel calibration method are proposed. The proposed method can simultaneously identify joint stiffness, kinematic and hand-eye parameters and obtain not only higher measurement accuracy but also higher parameter identification accuracy, which is suitable for on-site calibration.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 October 2022

Subramanian Surya Narayanan and Parammasivam K.M.

The purpose of this paper is to comprehensively evaluate the progress in the development of trapped vortex combustors (TVCs) in the past three decades. The review aims to identify…

Abstract

Purpose

The purpose of this paper is to comprehensively evaluate the progress in the development of trapped vortex combustors (TVCs) in the past three decades. The review aims to identify the needs, predict the scope and discuss the challenges of numerical simulations in TVCs applied to gas turbines.

Design/methodology/approach

TVC is an emerging combustion technology for achieving low emissions in gas turbine combustors. The overall operation of such TVCs can be on very lean mixture ratio and hence it helps in achieving high combustion efficiency and low overall emission levels. This review introduces the TVC concept and the evolution of this technology in the past three decades. Various geometries that were explored in TVC research are listed and their operating principles are explained. The review then categorically arranges the progress in computational studies applied to TVCs.

Findings

Analyzing extensive literature on TVCs the review discusses results of numerical simulations of various TVC geometries. Numerical simulations that were used to optimize TVC geometry and to enhance mixing are discussed. Reactive flow studies to comprehend flame stability and emission characteristics are then listed for different TVC geometries.

Originality/value

To the best of the authors’ knowledge, this review is the first of its kind to discuss extensively the computational progress in TVC development specific to gas turbine engines. Earlier review on TVC covers a wide variety of applications including land-based gas turbines, supersonic Ramjets, incinerators and hence compromise on the depth of analysis given to gas turbine engine applications. This review also comprehensively group the numerical studies based on geometry, flow and operating conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 November 2021

Tommy K.C. Ng, Man Fung Lo and Ben Y.F. Fong

Traditional Chinese medicine (TCM) had a long history and has been widely practiced worldwide. TCM includes acupunctures, herbal medicine and chiropractic. However, limited…

Abstract

Purpose

Traditional Chinese medicine (TCM) had a long history and has been widely practiced worldwide. TCM includes acupunctures, herbal medicine and chiropractic. However, limited studies examined the relationship between knowledge, attitude, utilisation and satisfaction of TCM among the Hong Kong general public. This study has developed a research model which aims to examine the relationship between knowledge, attitude, utilisation and satisfaction of TCM in Hong Kong by using partial least square structural equation model.

Design/methodology/approach

An online-based questionnaire was distributed by using convenience sampling. The questionnaire consisted of five parts to collect the data regarding the knowledge, attitude, utilisation and satisfaction of TCM of respondents. The reflective measurement model and structural model were examined with SmartPLS 3.0 statistical software.

Findings

A total of 131 respondents completed the survey, and all data were valid after data screening and cleaning. Around 60% of the participants received TCM information from their friends and family members, and 42% from the internet. Likewise, there is positive relationship from the knowledge of TCM to the utilisation, from the attitude to the utilisation and from the utilisation of TCM to the satisfaction. However, the positive relationship of knowledge regarding TCM and attitude is not proven. A t-test and one-way analysis of variance showed no significant differences between gender and age groups on each measurement items.

Originality/value

This paper provides insights for researchers and policymakers to understand the significance of attitude and perception of the benefits of treatments in the use of TCM. The positive experience of TCM from other people is essential for enhancing the willingness to use TCM while education is also fundamental in promoting TCM to the public.

Details

International Journal of Pharmaceutical and Healthcare Marketing, vol. 16 no. 1
Type: Research Article
ISSN: 1750-6123

Keywords

1 – 10 of over 1000