Search results

1 – 10 of 11
Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Fakhrozi Che Ani, Muhamed Abdul Fatah Muhamed Mukhtar and Mohamad Riduwan Ramli

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal…

Abstract

Purpose

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal cycling.

Design/methodology/approach

The BGA package samples are subjected to JEDEC Level 1 accelerated moisture treatment (85 °C/85%RH/168 h) with five times reflow at 270 °C. This is followed by multiple thermal cycling from 0 °C to 100 °C for 40 min per cycle, per IPC-7351B standards. For fracture investigation, the cross-sections of the samples are examined and analysed using the dye-and-pry technique and backscattered scanning electron microscopy. The packages' microstructures are characterized using an energy-dispersive X-ray spectroscopy approach. Also, the package assembly is investigated using the Darveaux numerical simulation method.

Findings

The study found that critical strain density is exhibited at the component pad/solder interface of the solder joint located at the most distant point from the axes of symmetry of the package assembly. The fracture mechanism is a crack fracture formed at the solder's exterior edges and grows across the joint's transverse section. It was established that Au content in the formed intermetallic compound greatly impacts fracture growth in the solder joint interface, with a composition above 5 Wt.% Au regarded as an unsafe level for reliability. The elongation of the crack is aided by the brittle nature of the Au-Sn interface through which the crack propagates. It is inferred that refining the solder matrix elemental compound can strengthen and improve the reliability of solder joints.

Practical implications

Inspection lead time and additional manufacturing expenses spent on investigating reliability issues in BGA solder joints can be reduced using the study's findings on understanding the solder joint fracture mechanism.

Originality/value

Limited studies exist on the thermal fracture mechanism of moisture-preconditioned BGA solder joints exposed to both multiple reflow and thermal cycling. This study applied both numerical and experimental techniques to examine the reliability issue.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Zuraihana Bachok, Mohamad Fikri Mohd Sharif, Fakhrozi Che Ani, Mohamad Riduwan Ramli and Muhamed Abdul Fatah bin Muhamed Mukhtar

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Abstract

Purpose

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Design/methodology/approach

Specimens of the capacitor assembly were subjected to JEDEC level 1 preconditioning (85 °C/85%RH/168 h) with 5× reflow at 270°C peak temperature. Then, they were inspected using a 2 µm scanning electron microscope to investigate the evidence of defects. The reliability test was also numerically simulated and analyzed using the extended finite element method implemented in ABAQUS.

Findings

Excellent agreements were observed between the SEM inspections and the simulation results. The findings showed evidence of discontinuities along the Cu and the Cu-epoxy layers and interfacial delamination crack at the Cu/Cu-epoxy interface. The possible root causes are thermal mismatch between the Cu and Cu-epoxy layers, moisture contamination and weak Cu/Cu-epoxy interface. The maximum crack length observed in the experimentally reflowed capacitor was measured as 75 µm, a 2.59% difference compared to the numerical prediction of 77.2 µm.

Practical implications

This work's contribution is expected to reduce the additional manufacturing cost and lead time in investigating reliability issues in MLCCs.

Originality/value

Despite the significant number of works on the reliability assessment of surface mount capacitors, work on crack growth in soft-termination MLCC is limited. Also, the combined experimental and numerical investigation of reflow-induced reliability issues in soft-termination MLCC is limited. These cited gaps are the novelties of this study.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 January 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Muhamed Abdul Fatah Muhamed Mukhtar, Fakhrozi Che Ani and Mohamad Riduwan Ramli

This study aims to investigate the reliability issues of microvoid cracks in solder joint packages exposed to thermal cycling fatigue.

Abstract

Purpose

This study aims to investigate the reliability issues of microvoid cracks in solder joint packages exposed to thermal cycling fatigue.

Design/methodology/approach

The specimens are subjected to JEDEC preconditioning level 1 (85 °C/85%RH/168 h) with five times reflow at 270°C. This is followed by thermal cycling from 0°C to 100°C, per IPC-7351B standards. The specimens' cross-sections are inspected for crack growth and propagation under backscattered scanning electronic microscopy. The decoupled thermomechanical simulation technique is applied to investigate the thermal fatigue behavior. The impacts of crack length on the stress and fatigue behavior of the package are investigated.

Findings

Cracks are initiated from the ball grid array corner of the solder joint, propagating through the transverse section of the solder ball. The crack growth increases continuously up to 0.25-mm crack length, then slows down afterward. The J-integral and stress intensity factor (SIF) values at the crack tip decrease with increased crack length. Before 0.15-mm crack length, J-integral and SIF reduce slightly with crack length and are comparatively higher, resulting in a rapid increase in crack mouth opening displacement (CMOD). Beyond 0.25-mm crack length, the values significantly decline, that there is not much possibility of crack growth, resulting in a negligible change in CMOD value. This explains the crack growth arrest obtained after 0.25-mm crack length.

Practical implications

This work's contribution is expected to reduce the additional manufacturing cost and lead time incurred in investigating reliability issues in solder joints.

Originality/value

The work investigates crack propagation mechanisms of microvoid cracks in solder joints exposed to moisture and thermal fatigue, which is still limited in the literature. The parametric variation of the crack length on stress and fatigue characteristics of solder joints, which has never been conducted, is also studied.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 September 2023

Mohamad Solehin Mohamed Sunar, Maria Abu Bakar, Atiqah A., Azman Jalar, Muhamed Abdul Fatah Muhamed Mukhtar and Fakhrozi Che Ani

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Abstract

Purpose

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Design/methodology/approach

The fine-pitch stencil used in this work is fabricated by electroform process and subsequently nano-coated using the PVD process. Stencil printing process was then performed to print the solder paste onto the printed circuit board (PCB) pad. The solder paste release was observed by solder paste inspection (SPI) and analyzed qualitatively and quantitatively. The printing cycle of up to 80,000 cycles was used to investigate the life span of stencil printing.

Findings

The finding shows that the performance of stencil printing in terms of solder printing quality is highly dependent on the surface roughness of the stencil aperture. PVD-coated stencil aperture can prolong the life span of stencil printing with an acceptable performance rate of about 60%.

Originality/value

Stencil printing is one of the important processes in surface mount technology to apply solder paste on the PCB. The stencil’s life span greatly depends on the type of solder paste, stencil printing cycles involved and stencil conditions such as the shape of the aperture, size and thickness of the stencil. This study will provide valuable insight into the relationship between the coated stencil wall aperture via PVD process on the life span of fine-pitch stencil printing.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 August 2023

Zuraihana Bachok, Aizat Abas, Hehgeraj A/L Raja Gobal, Norwahida Yusoff, Mohamad Riduwan Ramli, Mohamad Fikri Mohd Sharif, Fakhrozi Che Ani and Muhamed Abdul Fatah Muhamed Mukhtar

This study aims to investigate crack propagation in a moisture-preconditioned soft-termination multi-layer ceramic capacitor (MLCC) during thermal reflow process.

Abstract

Purpose

This study aims to investigate crack propagation in a moisture-preconditioned soft-termination multi-layer ceramic capacitor (MLCC) during thermal reflow process.

Design/methodology/approach

Experimental and extended finite element method (X-FEM) numerical analyses were used to analyse the soft-termination MLCC during thermal reflow. A cross-sectional field emission scanning electron microscope image of an actual MLCC’s crack was used to validate the accuracy of the simulation results generated in the study.

Findings

At 270°C, micro-voids between the copper-electrode and copper-epoxy layers absorbed 284.2 mm/mg3 of moisture, which generated 6.29 MPa of vapour pressure and caused a crack to propagate. Moisture that rapidly vaporises during reflow can cause stresses that exceed the adhesive/substrate interface’s adhesion strength of 6 MPa. Higher vapour pressure reduces crack development resistance. Thus, the maximum crack propagation between the copper-electrode and copper-epoxy layers at high reflow temperature was 0.077 mm. The numerical model was well-validated, as the maximum crack propagation discrepancy was 2.6%.

Practical implications

This research holds significant implications for the industry by providing valuable insights into the moisture-induced crack propagation mechanisms in soft-termination MLCCs during the reflow process. The findings can be used to optimise the design, manufacturing and assembly processes, ultimately leading to enhanced product quality, improved performance and increased reliability in various electronic applications. Moreover, while the study focused on a specific type of soft-termination MLCC in the reflow process, the methodologies and principles used in this research can be extended to other types of MLCC packages. The fundamental understanding gained from this study can be extrapolated to similar structures, enabling manufacturers to implement effective strategies for crack reduction across a wider range of MLCC applications.

Originality/value

The moisture-induced crack propagation in the soft-termination MLCC during thermal reflow process has not been reported to date. X-FEM numerical analysis on crack propagation have never been researched on the soft-termination MLCC.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 20 October 2022

Fei Chong Ng, Aizat Abas, Mohamad Riduwan Ramli, Mohamad Fikri Mohd Sharif and Fakhrozi Che Ani

This paper aims to study the interfacial delamination found in the boundary of the copper/copper-epoxy layers of a multi-layer ceramic capacitor.

Abstract

Purpose

This paper aims to study the interfacial delamination found in the boundary of the copper/copper-epoxy layers of a multi-layer ceramic capacitor.

Design/methodology/approach

The thermal reflow process of the capacitor assembly and the crack propagation from the initial micro voids presented in the boundary, and later manifested into delamination, were numerically simulated. Besides, the cross section of the capacitor assembly was inspected for delamination cracks and voids using a scanning electronic microscope.

Findings

Interfacial delamination in the boundary of copper/copper-epoxy layers was caused by the thermal mismatch and growth of micro voids during the thermal reflow process. The maximum deformation on the capacitor during reflow was 2.370 µm. It was found that a larger void would induce higher vicinity stress, mode I stress intensity factor, and crack elongation rate. Moreover, the crack extension increased with the exerted deformation until 0.3 µm, before saturating at the peak crack extension of around 0.078 µm.

Practical implications

The root cause of interfacial delamination issues in capacitors due to thermal reflow has been identified, and viable solutions proposed. These can eliminate the additional manufacturing cost and lead time incurred in identifying and tackling the issues; as well as benefit end-users, by promoting the electronic device reliability and performance.

Originality/value

To the best of the authors’ knowledge, the mechanism of delamination occurrence in a capacitor during has not been reported to date. The parametric variation analysis of the void size and deformation on the crack growth has never been conducted.

Details

Soldering & Surface Mount Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 May 2022

Mohamad Solehin Mohamed Sunar, Maria Abu Bakar, Azman Jalar, Mohamad Riduwan Ramli and Fakhrozi Che Ani

Reflow solder joint quality is significantly affected by the ability of the solder to perfectly fill pad space and retain good solder joint shape. This study aims to investigate…

Abstract

Purpose

Reflow solder joint quality is significantly affected by the ability of the solder to perfectly fill pad space and retain good solder joint shape. This study aims to investigate solder joint quality by quantitatively analyzing the stencil printing-deposited solder volume, solder height and solder coverage area.

Design/methodology/approach

The dispensability of different solder paste types on printed circuit board (PCB) pads using different stencil aperture shapes was evaluated. Lead-free Type 4 (20–38 µm particle size) and Type 5 (15–25 µm particle size) solder pastes were used to create solder joints according to standard reflow soldering.

Findings

The results show that the stencil aperture shape greatly affects the solder joint quality as compared with the type of solder paste. These investigations allow the development of new strategies for solving solder paste stencil printing issues and evaluating the quality of solder joints.

Originality/value

The reflow soldering process requires the appropriate selection of the stencil aperture shape according to the PCB and the solder paste according to the particle-size distribution of the solder alloy powder. However, there are scarce studies on the effects of stencil aperture shape and the solder alloy particle size on the solder paste space-filling ability.

Details

Microelectronics International, vol. 39 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 18 December 2018

Fakhrozi Che Ani, Azman Jalar, Abdullah Aziz Saad, Chu Yee Khor, Mohamad Aizat Abas, Zuraihana Bachok and Norinsan Kamil Othman

This study aims to investigate the NiO nano-reinforced solder joint characteristics of ultra-fine electronic package.

Abstract

Purpose

This study aims to investigate the NiO nano-reinforced solder joint characteristics of ultra-fine electronic package.

Design/methodology/approach

Lead-free Sn-Ag-Cu (SAC) solder paste was mixed with various percentages of NiO nanoparticles to prepare the new form of nano-reinforced solder paste. The solder paste was applied to assemble the ultra-fine capacitor using the reflow soldering process. A focussed ion beam, high resolution transmission electron microscopy system equipped with energy dispersive X-ray spectroscopy (EDS) was used in this study. In addition, X-ray inspection system, field emission scanning electron microscopy coupled with EDS, X-ray photoelectron spectroscopy (XPS) and nanoindenter were used to analyse the solder void, microstructure, hardness and fillet height of the solder joint.

Findings

The experimental results revealed that the highest fillet height was obtained with the content of 0.01 Wt.% of nano-reinforced NiO, which fulfilled the reliability requirements of the international IPC standard. However, the presence of the NiO in the lead-free solder paste only slightly influenced the changes of the intermetallic layer with the increment of weighted percentage. Moreover, the simulation method was applied to observe the distribution of NiO nanoparticles in the solder joint.

Originality/value

The findings are expected to provide a profound understanding of nano-reinforced solder joint’s characteristics of the ultra-fine package.

Details

Soldering & Surface Mount Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 January 2018

Fakhrozi Che Ani, Azman Jalar, Abdullah Aziz Saad, Chu Yee Khor, Roslina Ismail, Zuraihana Bachok, Mohamad Aizat Abas and Norinsan Kamil Othman

This paper aims to investigate the characteristics of ultra-fine lead-free solder joints reinforced with TiO2 nanoparticles in an electronic assembly.

Abstract

Purpose

This paper aims to investigate the characteristics of ultra-fine lead-free solder joints reinforced with TiO2 nanoparticles in an electronic assembly.

Design/methodology/approach

This study focused on the microstructure and quality of solder joints. Various percentages of TiO2 nanoparticles were mixed with a lead-free Sn-3.5Ag-0.7Cu solder paste. This new form of nano-reinforced lead-free solder paste was used to assemble a miniature package consisting of an ultra-fine capacitor on a printed circuit board by means of a reflow soldering process. The microstructure and the fillet height were investigated using a focused ion beam, a high-resolution transmission electron microscope system equipped with an energy dispersive X-ray spectrometer (EDS), and a field emission scanning electron microscope coupled with an EDS and X-ray diffraction machine.

Findings

The experimental results revealed that the intermetallic compound with the lowest thickness was produced by the nano-reinforced solder with a TiO2 content of 0.05 Wt.%. Increasing the TiO2 content to 0.15 Wt.% led to an improvement in the fillet height. The characteristics of the solder joint fulfilled the reliability requirements of the IPC standards.

Practical implications

This study provides engineers with a profound understanding of the characteristics of ultra-fine nano-reinforced solder joint packages in the microelectronics industry.

Originality/value

The findings are expected to provide proper guidelines and references with regard to the manufacture of miniaturized electronic packages. This study also explored the effects of TiO2 on the microstructure and the fillet height of ultra-fine capacitors.

Details

Soldering & Surface Mount Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 April 2020

Mohd Najib Ali Mokhtar, M.Z. Abdullah, Abdullah Aziz Saad and Fakhrozi Cheani

This paper focuses on the reliability of the solder joint after the self-alignment phenomenon during reflow soldering. The aim of this study is to analyse the joint quality of the…

124

Abstract

Purpose

This paper focuses on the reliability of the solder joint after the self-alignment phenomenon during reflow soldering. The aim of this study is to analyse the joint quality of the self-alignment assemblies of SnAg alloy solder joints with varying silver content.

Design/methodology/approach

The shear strength assessment was conducted in accordance with the JIS Z3 198-7 standard. The standard visual inspection of IPC-A-610G was also performed to inspect the self-alignment features of the solder joint samples. Statistical analysis was conducted to determine the probabilistic relationship of shear strength of the misalignment components.

Findings

The results from the mechanical reliability study indicate that there were decreasing trends in the shear strength value as misalignment offset increased. For shift mode configuration in the range of 0-300 µm, the resulting chip assembly inspection after the reflow process was in line with the IPC-A-610G standard. The statistical analysis shows that the solder type variation was insignificant to the shear strength of the chip resistor. The study concluded that the fracture occurred partially in the termination metallization at the lower part of the chip resistor. The copper content of the joint on that area shows that the crack occurred in the solder joint, and high silver content on the selected zone indicated that the fracture happened partially in the termination structure, as the termination structure of the lead-free chip resistor consists of an inner layer of silver and an outer layer of tin.

Practical implications

This study’s findings provide valuable guidelines and references to engineers and integrated circuit designers during the reflow soldering process in the microelectronics industry.

Originality/value

Studies on the effect of component misalignment on joint mechanical reliability are still limited, and studies on solder joint reliability involving the effect of differing contents of silver on varying chip component offset are rarely reported. Thus, this study is important to effectively bridge the research gap and yield appropriate guidelines in the potential industry.

Details

Soldering & Surface Mount Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 11