Search results

1 – 10 of 980
Article
Publication date: 7 July 2021

Amirhessam Tahmassebi, Mehrtash Motamedi, Amir H. Alavi and Amir H. Gandomi

Engineering design and operational decisions depend largely on deep understanding of applications that requires assumptions for simplification of the problems in order to find…

207

Abstract

Purpose

Engineering design and operational decisions depend largely on deep understanding of applications that requires assumptions for simplification of the problems in order to find proper solutions. Cutting-edge machine learning algorithms can be used as one of the emerging tools to simplify this process. In this paper, we propose a novel scalable and interpretable machine learning framework to automate this process and fill the current gap.

Design/methodology/approach

The essential principles of the proposed pipeline are mainly (1) scalability, (2) interpretibility and (3) robust probabilistic performance across engineering problems. The lack of interpretibility of complex machine learning models prevents their use in various problems including engineering computation assessments. Many consumers of machine learning models would not trust the results if they cannot understand the method. Thus, the SHapley Additive exPlanations (SHAP) approach is employed to interpret the developed machine learning models.

Findings

The proposed framework can be applied to a variety of engineering problems including seismic damage assessment of structures. The performance of the proposed framework is investigated using two case studies of failure identification in reinforcement concrete (RC) columns and shear walls. In addition, the reproducibility, reliability and generalizability of the results were validated and the results of the framework were compared to the benchmark studies. The results of the proposed framework outperformed the benchmark results with high statistical significance.

Originality/value

Although, the current study reveals that the geometric input features and reinforcement indices are the most important variables in failure modes detection, better model can be achieved with employing more robust strategies to establish proper database to decrease the errors in some of the failure modes identification.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 May 2020

Ranjit Kumar Chaudhary, Tathagata Roy and Vasant Matsagar

Despite recognizing the significance of risk-based frameworks in fire safety engineering, the usual approach in structural fire design is largely member/component level, wherein…

Abstract

Purpose

Despite recognizing the significance of risk-based frameworks in fire safety engineering, the usual approach in structural fire design is largely member/component level, wherein effect of uncertainties influencing the fire resistance of structures are not explicitly considered. In this context, a probabilistic framework is presented to investigate the vulnerability of a reinforced concrete (RC) members and structure under fire loading scenario.

Design/methodology/approach

The RC structures exposed to fire are modeled in a finite element (FE) platform incorporating material and geometric nonlinearity, in which the transient thermo-mechanical analysis is carried out by suitably incorporating the temperature variation of thermal and mechanical properties of both concrete and steel rebar. The stochasticity in the system is considered in structural resistance, thermal and fire model parameters, and the subsequent fragility curves are developed considering threshold limit state of deflection.

Findings

The fire resistance of RC structure is reported to be significantly lower in comparison to the RC members, thereby illustrating the current prescriptive design approaches based on studies of structural member behavior to be crucial from a safety and reliability point of view.

Practical implications

The framework developed for the vulnerability assessment of RC structures under fire hazard through FE analysis can be effectively used to estimate the structural fire resistance for other similar structure to enhance safety and reliability of structures under such extreme threats.

Originality/value

The paper proposes a novel methodology for vulnerability assessment of three-dimensional RC structures under fire hazard through FE analysis and provides comparison of the structural fragility with fragility developed for structural members. Moreover, the research emphasizes to assume 3D behavior of the structure rather than the approximate 2D behavior.

Details

Journal of Structural Fire Engineering, vol. 11 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 December 2023

Jingxiao Shu, Yao Lu and Yan Liang

To understand the seismic behavior of reinforced concrete (RC) beams confined by corroded stirrups, low-reversed cyclic loading tests were carried out on seven RC beam specimens…

Abstract

Purpose

To understand the seismic behavior of reinforced concrete (RC) beams confined by corroded stirrups, low-reversed cyclic loading tests were carried out on seven RC beam specimens with different stirrup corrosion levels and stirrup ratios to investigate their mechanical characteristics.

Design/methodology/approach

The failure mode, hysteresis behavior, skeleton curves, ductility, stiffness degradation and energy dissipation behavior of RC specimens are compared and discussed. The experimental results showed that the restraint of concrete provided by corroded stirrups is reduced, which leads to a decline in seismic performance.

Findings

For the specimens with the same ratios of stirrup, as the corrosion level increased, the load-carrying capacity, stiffness, plastic deformation capacity and energy-dissipation capacity dropped significantly. Compared with the uncorroded specimen, the failure modes of specimens with high corrosion level changed from ductile bending failure to brittle failure. For the specimens with the same levels of corrosion, the higher the stirrup ratio was, the stronger the restraint effect of the stirrups on the concrete, and the seismic behavior of the specimens was obviously improved.

Originality/value

In this paper, a total of seven full-size RC beam specimens at joints with different stirrup corrosion levels and stirrup ratios were designed and constructed to explore the influences of corrosion levels and stirrup ratios of stirrups on the seismic performances. The failure modes, strain of reinforcement, hysteretic curves, skeleton curves, stiffness degradation and ductility factor of RC specimens are compared and discussed.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 July 2015

George Markou and Manolis Papadrakakis

The purpose of this paper is to present a simplified hybrid modeling (HYMOD) approach which overcomes limitations regarding computational cost and permits the simulation and…

Abstract

Purpose

The purpose of this paper is to present a simplified hybrid modeling (HYMOD) approach which overcomes limitations regarding computational cost and permits the simulation and prediction of the nonlinear inelastic behavior of full-scale RC structures.

Design/methodology/approach

The proposed HYMOD formulation was integrated in a research software ReConAn FEA and was numerically studied through the use of different numerical implementations. Then the method was used to model a full-scale two-storey RC building, in an attempt to demonstrate its numerical robustness and efficiency.

Findings

The numerical results performed demonstrate the advantages of the proposed hybrid numerical simulation for the prediction of the nonlinear ultimate limit state response of RC structures.

Originality/value

A new numerical modeling method based on finite element method is proposed for simulating accurately and with computational efficiency, the mechanical behavior of RC structures. Currently 3D detailed methods are used to model single structural members or small parts of RC structures. The proposed method overcomes the above constraints.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2002

H.Y. Leung

This paper aims to study the effect of external glass fibre reinforced polymer (GFRP) plates on the flexural and shear behaviour of structurally deficient reinforced concrete (RC

Abstract

This paper aims to study the effect of external glass fibre reinforced polymer (GFRP) plates on the flexural and shear behaviour of structurally deficient reinforced concrete (RC) beams, a total of ten 180mm×250mm×2,500mm beams, including over‐designed, unplated under‐designed and plated under‐designed, were tested under four‐point bending condition. Experimental results indicate that the use of GFRP plates enhances the strength and deformation capacity of RC beams by altering their failure modes. Application of side plates on shear‐deficient RC beams appears to be more effective than using bottom plates on flexure‐deficient RC beams. However, without any improvement of concrete compressive capacity, additional shear capacities provided to the beams under the action of side plates increase the likelihood of beam failure by concrete crushing. Simultaneous use of bottom and side plates on flexural‐ and shear‐deficient RC beams may result in reduced deflection.

Details

Structural Survey, vol. 20 no. 5
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 16 February 2023

M. Vishal and K.S. Satyanarayanan

This study delineates the effect of cover thickness on reinforced concrete (RC) columns and beams under an elevated fire scenario. Columns and beams are important load-carrying…

Abstract

Purpose

This study delineates the effect of cover thickness on reinforced concrete (RC) columns and beams under an elevated fire scenario. Columns and beams are important load-carrying structural members of buildings. Under all circumstances, the columns and beams were set to be free from damage to avoid structural failure. Under the high-temperature scenario, the RC element may fail because of the material deterioration that occurs owing to the thermal effect. This study attempts to determine the optimum cover thickness for beams and columns under extreme loads and fire conditions.

Design/methodology/approach

Cover thicknesses of 30, 40, 45, 50, 60 and 70 mm for the columns and 10, 20, 25, 30, 35, 40, 50, 60 and 70 mm for the beams were adopted in this study. Both steady-state and transient-state conditions under thermomechanical analysis were performed using the finite element method to determine the heat transfer through the RC section and to determine the effect of thermal stresses.

Findings

The results show that the RC elements have a greater influence on the additional cover thickness at extreme temperatures and higher load ratios than at the service stages. The safe limits of the structural members were obtained under the combined effects of elevated temperatures and structural loads. The results also indicate that the compression members have a better thermal performance than the flexural members.

Research limitations/implications

Numerical investigations concerning the high-temperature behavior of structural elements are useful. The lack of an experimental setup encourages researchers to perform numerical investigations. In this study, the finite element models were validated with existing finite element models and experimental results.

Practical implications

The obtained safe limit for the structural members could help to understand their resistance to fire in a real-time scenario. From the safe limit, a suitable design can be preferred while designing the structural members. This could probably save the structure from collapse.

Originality/value

There is a lack of both numerical and experimental research works. In numerical modeling, the research works found in the literature had difficulties in developing a numerical model that satisfactorily represents the structural members under fire, not being able to adequately understand their behavior at high temperatures. None of them considered the influence of the cover thickness under extreme fire and loading conditions. In this paper, this influence was evaluated and discussed.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 October 2015

Kingsley Opoku Appiah and Amon Chizema

This study aims to examine the role the structure of corporate boards plays in the failure of the firm. Specifically, it examines whether the remuneration committee is related to…

3886

Abstract

Purpose

This study aims to examine the role the structure of corporate boards plays in the failure of the firm. Specifically, it examines whether the remuneration committee is related to corporate failure in the UK.

Design/methodology/approach

The study uses 1,835 firm-year observations for 98 failed and 269 non-failed UK-listed non-financial firms between the periods of 1994 and 2011. This study used pooled cross-sectional, fixed and random effects LOGIT models to estimate whether corporate failure is related to remuneration committee in the UK.

Findings

The findings indicate that corporate failure is negatively related to the independence of the remuneration committee chairman and remuneration committee’s effectiveness but not remuneration committee’s presence, size and meetings. However, a positive and significant relationship was observed between corporate failure and remuneration committee independence.

Practical implications

The findings of the study provide support for the appropriateness of agency theory as analytical lens through which to study the efficacy of remuneration committee, especially the independence of the remuneration committee chairperson, as a board monitoring device, in the context of corporate failure.

Originality/value

The paper adds to existing literature on corporate governance by establishing the likely causes of corporate failure in the UK.

Details

Corporate Governance, vol. 15 no. 5
Type: Research Article
ISSN: 1472-0701

Keywords

Article
Publication date: 29 March 2024

Aminuddin Suhaimi, Izni Syahrizal Ibrahim and Mariyana Aida Ab Kadir

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to…

Abstract

Purpose

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to understand pre-loading's role in replicating RC beams' actual responses to fire, aiming to improve fire testing protocols and structural fire engineering design.

Design/methodology/approach

This review systematically aggregates data from existing literature on the fire response of RC beams, comparing scenarios with (WP) and without pre-loading (WOP). Through statistical tools like the two-tailed t-test and Mann–Whitney U-test, it assesses deflection extremes. The study further examines structural responses, including flexural and shear behavior, ultimate load capacity, post-yield behavior, stiffness degradation and failure modes. The approach concludes with a statistical forecast of ideal pre-load levels to elevate experimental precision and enhance fire safety standards.

Findings

The review concludes that pre-loading profoundly affects the fire response of RC beams, suggesting a 35%–65% structural capacity range for realistic simulations. The review also recommended the initial crack load as an alternative metric for determining the pre-loading impact. Crucially, it highlights that pre-loading not only influences the fire response but also significantly alters the overall structural behavior of the RC beams.

Originality/value

The review advances structural fire engineering with an in-depth analysis of pre-loading's impact on RC beams during fire exposure, establishing a validated pre-load range through thorough statistical analysis and examination of previous research. It refines experimental methodologies and structural design accuracy, ultimately bolstering fire safety protocols.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 4 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load…

Abstract

Purpose

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load using the robust and reliable general-purpose finite element (FE) software ANSYS. A parametric study is carried out to analyse the flexural and ductility behaviour of RC beams under various influencing parameters.

Design/methodology/approach

To develop and validate the numerical FE models, a total of four experimentally tested simply supported RC beams are taken from the available literature and two beams are selected from each author. The concrete, steel reinforcements, bond-slip mechanism, loading and supporting plates are modelled using SOLID65, LINK180, COMBIN39 and SOLID185 elements, respectively. The validated models are then used to conduct parametric FE analysis to investigate the effect of concrete compressive strength, percentage of tensile reinforcement, compression reinforcement ratio, transverse shear reinforcement, bond-slip mechanism, concrete compressive stress-strain constitutive models, beam symmetry and varying overall depth of beam on the ultimate load-carrying capacity and ductility behaviour of RC beams.

Findings

The developed three-dimensional FE models can able to capture the load and midspan deflections at critical points, the accurate yield point of steel reinforcements, the formation of initial and progressive concrete crack patterns and the complete load-deflection curves of RC beams up to ultimate failure. From the numerical results, it can be concluded that the FE model considering the bond-slip effect with Thorenfeldt’s concrete compressive stress-strain model exhibits a better correlation with the experimental data.

Originality/value

The ultimate load and deflection results of validated FE models show a maximum deviation of less than 10% and 15%, respectively, as compared to the experimental results. The developed model is also capable of capturing concrete failure modes accurately. Overall, the FE analysis results were found quite acceptable and compared well with the experimental data at all loading stages. It is suggested that the proposed FE model is a practical and reliable tool for analyzing the flexural behaviour of RC members and can be used for performing parametric studies.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 September 2021

Manjunatha Mahadevappa, Rakshith Shri Guru Krupa, Shaik Kabeer Ahmed and Rakshith Kumar Shetty

The structural behavior of reinforced concrete (RC) beams made with waste foundry sand (WFS) was examined in this study by using investigational data. Five RC beams were tested in

Abstract

Purpose

The structural behavior of reinforced concrete (RC) beams made with waste foundry sand (WFS) was examined in this study by using investigational data. Five RC beams were tested in this present work, four beams with varying WFS content and one beam with natural aggregates. The factors considered for studying the flexural performance of RC beams were WFS content (10%, 20%, 30% and 40%), 15% Ground Granulated Blast Furnace Slag (GGBS) is used as supplementary cementitious (SCM) content for all beams and tension reinforcement ratio (0.95%). The crack pattern of the RC beams with WFS (RCB1, RCB2, RCB3 and RCB4) was similar to that of referral beam–RCB0. The RC beams made with WFS (RCB1, RCB2, RCB3 and RCB4) show lesser number of cracks than referral beam–RCB0. It is observed that RCB1 beam shows higher ultimate moment carrying capacity than other RC beams. A detailed assessment of the investigational results and calculations based on IS: 456-2000 code for flexural strength exhibited that the present provisions conservatively predicts the flexural strength and crack width of RC beams with WFS and 15% GGBS. It is suggested that 10% WFS can be used to make RC beam.

Design/methodology/approach

In this present work, four RC beams made WFS and one RC beam made with natural aggregates. 15% GGBS is used as SCM for all RC beams. After casting of RC beams, the specimens were cured with wetted gunny bags for 28 days. After curing, RC beams like RCB0, RCB1, RCB2, RCB3 and RCB4 were tested under a four-point loading simply supported condition. An assessment of investigational results and calculations as per IS: 456-2000 code provisions has been made for flexural strength and crack width of RC beams with WFS and 15% GGBS. The crack pattern is also studied.

Findings

From this experimental results, it is found that 10% WFS can be used for making RC beam. The RCB1 with 10% WFS shows better flexural performance than other RC beams. RC beams made with WFS show lesser number of cracks than referral beam–RCB0. IS: 456-2000 code provisions can be safely used to predict the moment capacity and crack width of RC beams with WFS and 15% GGBS.

Originality/value

By utilization of WFS, the dumping of waste and environmental pollution can be reduced. By experimental investigation, it is suggested that 10% WFS can be used to make RC structural members for low cost housing projects.

Details

International Journal of Structural Integrity, vol. 12 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 980