Search results

1 – 10 of over 1000
Article
Publication date: 1 February 2005

E.P. Zafiropoulos and E.N. Dialynas

The paper presents an efficient methodology that was developed for the reliability prediction and the failure mode effects and criticality analysis (FMECA) of electronic…

3636

Abstract

Purpose

The paper presents an efficient methodology that was developed for the reliability prediction and the failure mode effects and criticality analysis (FMECA) of electronic devices using fuzzy logic.

Design/methodology/approach

The reliability prediction is based on the general features and characteristics of the MIL‐HDBK‐217FN2 technical document and a derating plan for the system design is developed in order to maintain low components’ failure rates. These failure rates are used in the FMECA, which uses fuzzy sets to represent the respective parameters. A fuzzy failure mode risk index is introduced that gives priority to the criticality of the components for the system operation, while a knowledge base is developed to identify the rules governing the fuzzy inputs and output. The fuzzy inference module is Mamdani type and uses the min‐max implication‐aggregation.

Findings

A typical power electronic device such as a switched mode power supply was analyzed and the appropriate reliability indices were estimated using the stress factors of the derating plan. The fuzzy failure mode risk indices were calculated and compared with the respective indices calculated by the conventional FMECA.

Research limitations/implications

Further research efforts are needed for the application of fuzzy modeling techniques in the area of reliability assessment of electronic devices. These research efforts can be concentrated in certain applications that have practical value.

Practical implications

Practical applications can use a fuzzy FMECA modeling instead of the classical FMECA one, in order to obtain a more accurate analysis.

Originality/value

Fuzzy modeling of FMECA is described which can calculate fuzzy failure mode risk indices.

Details

International Journal of Quality & Reliability Management, vol. 22 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 11 October 2021

Ammar Chakhrit and Mohammed Chennoufi

This paper aims to enable the analysts of reliability and safety system to assess the criticality and prioritize failure modes perfectly to prefer actions for controlling…

Abstract

Purpose

This paper aims to enable the analysts of reliability and safety system to assess the criticality and prioritize failure modes perfectly to prefer actions for controlling the risks of undesirable scenarios.

Design/methodology/approach

To resolve the challenge of uncertainty and ambiguous related to the parameters, frequency, non-detection and severity considered in the traditional approach failure mode effect and criticality analysis (FMECA) for risk evaluation, the authors used fuzzy logic where these parameters are shown as members of a fuzzy set, which fuzzified by using appropriate membership functions. The adaptive neuro-fuzzy inference system process is suggested as a dynamic, intelligently chosen model to ameliorate and validate the results obtained by the fuzzy inference system and effectively predict the criticality evaluation of failure modes. A new hybrid model is proposed that combines the grey relational approach and fuzzy analytic hierarchy process to improve the exploitation of the FMECA conventional method.

Findings

This research project aims to reflect the real case study of the gas turbine system. Using this analysis allows evaluating the criticality effectively and provides an alternate prioritizing to that obtained by the conventional method. The obtained results show that the integration of two multi-criteria decision methods and incorporating their results enable to instill confidence in decision-makers regarding the criticality prioritizations of failure modes and the shortcoming concerning the lack of established rules of inference system which necessitate a lot of experience and shows the weightage or importance to the three parameters severity, detection and frequency, which are considered to have equal importance in the traditional method.

Originality/value

This paper is providing encouraging results regarding the risk evaluation and prioritizing failures mode and decision-makers guidance to refine the relevance of decision-making to reduce the probability of occurrence and the severity of the undesirable scenarios with handling different forms of ambiguity, uncertainty and divergent judgments of experts.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 June 2003

Marcello Braglia, Marco Frosolini and Roberto Montanari

This paper presents a tool for reliability and failure mode analysis based on an advanced version of the popular failure mode, effects and criticality analysis (FMECA…

2234

Abstract

This paper presents a tool for reliability and failure mode analysis based on an advanced version of the popular failure mode, effects and criticality analysis (FMECA) procedure. To help the analyst formulating efficiently effective criticality assessments of the possible causes of failure, the fuzzy logic technique is adopted. Particular attention has been devoted to support the maintenance staff with a fuzzy criticality assessment model easy to implement and design. To test the proposed methodology, an actual application concerning a process plant in milling field for human consumption flour is showed in the paper.

Details

International Journal of Quality & Reliability Management, vol. 20 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 17 April 2007

Wei‐Jaw Deng, Chung‐Ching Chiu and Chih‐Hung Tsai

Failure mode and effects analysis (FMEA) is a preventive technique in reliability management field. The successful implementation of FMEA technique can avoid or reduce the…

Abstract

Failure mode and effects analysis (FMEA) is a preventive technique in reliability management field. The successful implementation of FMEA technique can avoid or reduce the probability of system failure and achieve good product quality. The FMEA technique had applied in vest scopes which include aerospace, automatic, electronic, mechanic and service industry. The marking process is one of the back ends testing process that is the final process in semiconductor process. The marking process failure can cause bad final product quality and return although is not a primary process. So, how to improve the quality of marking process is one of important production job for semiconductor testing factory. This research firstly implements FMEA technique in laser marking process improvement on semiconductor testing factory and finds out which subsystem has priority failure risk. Secondly, a CCD position solution for priority failure risk subsystem is provided and evaluated. According analysis result, FMEA and CCD position implementation solution for laser marking process improvement can increase yield rate and reduce production cost. Implementation method of this research can provide semiconductor testing factory for reference in laser marking process improvement.

Details

Asian Journal on Quality, vol. 8 no. 1
Type: Research Article
ISSN: 1598-2688

Keywords

Article
Publication date: 29 April 2014

Debasis Das Adhikary, Goutam Kumar Bose, Dipankar Bose and Souren Mitra

The purpose of this paper is to present a multi criterion failure mode effect and criticality analysis for coal-fired thermal power plants using uncertain data as well as…

Abstract

Purpose

The purpose of this paper is to present a multi criterion failure mode effect and criticality analysis for coal-fired thermal power plants using uncertain data as well as substituting the traditional risk priority number estimation method.

Design/methodology/approach

Grey-complex proportional assessment (COPRAS-G) method, a multi criteria decision making tool is applied to evaluate the criticalities of the failure modes (alternatives). In this model the criteria (criticality factor) against each alternative are expressed in grey number instead of crisp values.

Findings

Rupture failure of the straight tube of economizer (ECO) due to erosion is the highest critical failure mode whereas rupture failure of the stub of ECO due to welding defect is the lowest critical failure mode.

Originality/value

This paper incorporates human and environmental factors as additional factors which also influence the failure modes significantly. The COPRAS-G method is modified according this problem. Uncertainty in the scoring of criticality factors against each failure mode by various maintenance personnel is expressed in grey numbers.

Details

International Journal of Quality & Reliability Management, vol. 31 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 15 July 2022

Saleh Abu Dabous, Tareq Zadeh and Fakhariya Ibrahim

This study aims at introducing a method based on the failure mode, effects and criticality analysis (FMECA) to aid in selecting the most suitable formwork system with the…

Abstract

Purpose

This study aims at introducing a method based on the failure mode, effects and criticality analysis (FMECA) to aid in selecting the most suitable formwork system with the minimum overall cost.

Design/methodology/approach

The research includes a review of the literature around formwork selection and analysis of data collected from the building construction industry to understand material failure modes. An FMECA-based model that estimates the total cost of a formwork system is developed by conducting a two-phased semi-structured interview and regression and statistical analyses. The model comprises material, manpower and failure mode costs. A case study of fifteen buildings is analysed using data collected from construction projects in the UAE to validate the model.

Findings

Results obtained indicate an average accuracy of 89% in predicting the total formwork cost using the proposed method. Moreover, results show that the costs incurred by failure modes account for 11% of the total cost on average.

Research limitations/implications

The analysis is limited to direct costs and costs associated with risks; other costs and risk factors are excluded. The proposed framework serves as a guide to construction project managers to enhance decision-making by addressing the indirect cost of failure modes.

Originality/value

The research proposes a novel formwork system selection method that improves upon the subjective conventional selection process by incorporating the risks and uncertainties associated with the failure modes of formwork systems into the decision-making process.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 6 June 2016

Ilaria De Sanctis, Claudia Paciarotti and Oreste Di Giovine

The purpose of this paper is to propose a practical method of performing maintenance in the offshore industry where engineers have to manage problems such as the high cost…

1048

Abstract

Purpose

The purpose of this paper is to propose a practical method of performing maintenance in the offshore industry where engineers have to manage problems such as the high cost of operations, assuring an high availability of the plant, safety on board and environmental protection. Indeed an efficient maintenance method it is necessary in order to offer methods and criteria to select the rights maintenance strategies keeping in to account the environmental, safety and production constrains.

Design/methodology/approach

The paper provides an overview of reliability centered maintenance (RCM) and reliability, availability, maintainability methodologies and an integration of the two methodologies in a particular case study in the oil and gas sector.

Findings

This paper suggests an improvement of the well-established RCM methodology applicable to industries with high priority level. It is proposed an integration between a reliability analysis and an availability analysis and an application on the offshore oil and gas industry.

Practical implications

The methodology provides an excellent tool that can be utilized in industries, where safety, regulations and the availability of the plant play a fundamental role.

Originality/value

The proposed methodology provides a practical method for selecting the best maintenance strategy considering the equipment redundancy and sparing, the asset’s performance over long time scales, and the system uptime, downtime and slowdowns.

Details

International Journal of Quality & Reliability Management, vol. 33 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 December 2005

Rajiv Kumar Sharma, Dinesh Kumar and Pradeep Kumar

To permit the system safety and reliability analysts to evaluate the criticality or risk associated with item failure modes.

5270

Abstract

Purpose

To permit the system safety and reliability analysts to evaluate the criticality or risk associated with item failure modes.

Design/methodology/approach

The factors considered in traditional failure mode and effect analysis (FMEA) for risk assessment are frequency of occurrence (Sf), severity (S) and detectability (Sd) of an item failure mode. Because of the subjective and qualitative nature of the information and to make the analysis more consistent and logical, an approach using fuzzy logic is proposed. In the proposed approach, these parameters are represented as members of a fuzzy set fuzzified by using appropriate membership functions and are evaluated in fuzzy inference engine, which makes use of well‐defined rule base and fuzzy logic operations to determine the criticality/riskiness level of the failure. The fuzzy conclusion is then defuzzified to get risk priority number. The higher the value of RPN, the greater will be the risk and lower the value of RPN, and the lesser will be the risk. The fuzzy linguistic assessment model was developed using toolbox platform of MATLAB 6.5 R.13.

Findings

The applicability of the proposed approach is investigated with the help of an illustrative case study from the paper industry. Fuzzy risk assessment is carried out for prioritizing failure causes of the hydraulic system, a primary element of the feeding system. The results provide an alternate ranking to that obtained by the traditional method. It is concluded from the study that the fuzzy logic‐based approach not only resolves the limitations associated with traditional methodology for RPN evaluation but also permits the experts to combine probability of occurrence (Sf), severity (S) and detectability (Sd) of failure modes in a more flexible and realistic manner by using their judgement, experience and expertise.

Originality/value

The paper integrates the use of fuzzy logic and expert database with FMEA and may prove helpful to system safety and reliability analysts while conducting failure mode and effect analysis to prioritize failures for taking corrective or remedial actions.

Details

International Journal of Quality & Reliability Management, vol. 22 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 October 2018

Alessandro Brun and Matteo Mario Savino

Failure mode and effect analysis (FMEA) is an analysis technique for identifying and eliminating known and/or potential failures and problems from products, processes or…

Abstract

Purpose

Failure mode and effect analysis (FMEA) is an analysis technique for identifying and eliminating known and/or potential failures and problems from products, processes or systems. Notwithstanding its diffusion, traditional FMEA has several limitations. Lately, scientific research has been focused on improving said limitations, yet the process is still ongoing. The purpose of this paper is to support developments in this area.

Design/methodology/approach

The paper improves the conventional FMEA by using the method of pairwise comparison to establish the relative importance of the input factors in risk priority number calculation, and Markov chains to calculate risk distributions in the long term.

Findings

The functioning and usefulness of the proposed methodology is demonstrated through an application to the construction industry, one of the world’s biggest industrial sectors, dogged by a high rate of work-related injuries and casualties.

Originality/value

Having demonstrated the applicability of the novel methodology to a real domain, the paper contributes to the process of overcoming traditional FMEA limitations.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 22 March 2019

Agam Gugaliya, Soumava Boral and V.N.A. Naikan

Assessing the severity of failure modes of critical industrial machinery is often considered as an onerous task and sometimes misinterpreted by shop-floor…

Abstract

Purpose

Assessing the severity of failure modes of critical industrial machinery is often considered as an onerous task and sometimes misinterpreted by shop-floor engineer/maintenance personnel. The purpose of this paper is to develop an improved FMECA method for prioritizing the failure modes as per their risk levels and validating the same through a real case study of induction motors used in a process plant.

Design/methodology/approach

This paper presents a novel hybrid multi-criteria decision-making (MCDM) approach to prioritize different failure modes according to their risk levels by combining analytical hierarchy process (AHP) with a newly introduced MCDM approach, election based on relative value distance (ERVD). AHP is incorporated in the proposed approach to determine the criteria weights, evaluated in linguistic terms by industrial expert. Furthermore, ERVD, which is based on the concept of prospect theory of human cognitive process, is applied to rank the potential failure modes.

Findings

It is found that the proposed FMECA approach provides better results in accordance with the actual industrial scenario and helps in effectively prioritizing the failure modes. A comparison is also made to highlight the differences of results between the proposed approach with TOPSIS and conventional FMECA.

Research limitations/implications

This research paper proposes an improved FMECA method and, thus, provides a deep insight to maintenance managers for effectively prioritizing the failure modes. The correct prioritization of failure modes will help in effective maintenance planning, thus reducing the downtime and improving profit to the organization.

Practical implications

A real case of process plant induction motor has been introduced in the research paper to show the applicability of this decision-making approach, and the approach is found to be suitable in correct prioritization of the failure modes.

Originality/value

Severity has been decoupled into various factors affecting it, to make it more relevant as per actual industrial scenario. Then, a novel modified FMECA has been developed using a hybrid MCDM approach (AHP and ERVD). This hybrid method, as well as its application in FMECA, has not been developed by any previous researcher. Moreover, the same has been thoroughly explained by considering a real case of process plant induction motors and validated with cross-functional experts.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of over 1000