Search results

1 – 10 of over 2000
Article
Publication date: 21 August 2023

Abdulnaser Ibrahim Nour, Mohammad Najjar, Saed Al Koni, Abullateef Abudiak, Mahmoud Ibrahim Noor and Rani Shahwan

The purpose of this research is to examine the impact of governance mechanisms on corporate failure.

Abstract

Purpose

The purpose of this research is to examine the impact of governance mechanisms on corporate failure.

Design/methodology/approach

This study used a hypothesis-testing research design to collect data from the annual reports of 35 companies listed on Palestine Exchange from 2010 to 2019. Descriptive and inferential statistics were employed, along with correlation analysis to evaluate linear relationships between variables. The variance inflation factor was used to test multicollinearity, and binary logistic regression was utilized to develop the research model.

Findings

There is a significant positive relationship between board of directors' independency, institutional ownership and the quality of external audit, and corporate failure reduction. No significant relationship has been found among corporate governance variables such as board size, board meetings' frequency, board members' remuneration and audit committee existence, and corporate failure reduction.

Research limitations/implications

Several empirical research studies have developed models to predict corporate failure using accounting and financial data. However, limited research has empirically investigated the impact of the different mechanisms of governance on corporate failure prediction.

Practical implications

The research highlighted the significance of companies' commitment to governance principles and their impact on predicting failure. The study suggests that decision-makers and managers can adopt different governance mechanisms to support corporate success and avoid those that may lead to negative consequences and failure.

Originality/value

This research is the first in Palestine to use a comprehensive list of corporate governance mechanisms to predict the failure of companies listed on the Palestine Stock Exchange between 2010 and 2019.

Details

Journal of Accounting in Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-1168

Keywords

Article
Publication date: 8 January 2024

Fatemeh Sajjadian, Mirahmad Amirshahi, Neda Abdolvand, Bahman Hajipour and Shib Sankar Sana

This study aims to endeavor to shed light on the underlying causal mechanisms behind the failure of startups by examining the failure process in such organizations. To achieve…

Abstract

Purpose

This study aims to endeavor to shed light on the underlying causal mechanisms behind the failure of startups by examining the failure process in such organizations. To achieve this goal, the study conducted a comprehensive review of the literature on the definition of failure and its various dimensions, resulting in the compilation of a comprehensive list of causes of startup failure. Subsequently, the failure process was analyzed using a behavioral strategy approach that encompasses rationality, plasticity and shaping, as well as the growth approach of startups based on dialectic, teleology and evolution theories.

Design/methodology/approach

The proposed research methodology was a case study using process tracing, with the sample being a failed platform in the ride-hailing technology sector. The causal mechanism was further explicated through the combined application of the behavioral strategy approach and interpretive structural modeling analysis.

Findings

The findings of the study suggest that the failure of startups is a result of interlinked causes and effects, and growth in these organizations is driven by dialectic, teleology and evolution theories.

Originality/value

The outcomes of the research can assist startups in formulating an effective strategy to deliver the right value proposition to the market, thereby reducing the chances of failure.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 21 February 2024

Mohan Kumar K and Arumaikkannu G

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices…

Abstract

Purpose

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices ranging from bending to stretch-dominated structures using selective laser sintering (SLS).

Design/methodology/approach

Three bending and two stretch-dominated unit cells were selected based on the Maxwell stability criterion. Lattices were designed with three RD and fabricated by SLS technique using PA12 material. Quasi-static compression tests with three strain rates were carried out using Taguchi's L9 experiments. The lattice compressive behaviour was verified with the Gibson–Ashby analytical model.

Findings

It has been observed that RD and strain rates played a vital role in lattice compressive properties by controlling failure mechanisms, resulting in distinct post-yielding responses as fluctuating and stable hardening in the plateau region. Analysis of variance (ANOVA) displayed the significant impact of RD and emphasised dissimilar influences of strain rate that vary to cell topology. Bending-dominated lattices showed better compressive properties than stretch-dominated lattices. The interesting observation is that stretch-dominated lattices with over-stiff topology exhibited less compressive properties contrary to the Maxwell stability criterion, whereas strain rate has less influence on the SEA of face-centered and body-centered cubic unit cells with vertical and horizontal struts (FBCCXYZ).

Practical implications

This comparative study is expected to provide new prospects for designing end-user parts that undergo various impact conditions like automotive bumpers and evolving techniques like hybrid and functionally graded lattices.

Originality/value

To the best of the authors' knowledge, this is the first work that relates the strain rate with compressive properties and also highlights the lattice behaviour transformation from ductile to brittle while the increase of RD and strain rate analytically using the Gibson–Ashby analytical model.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 March 2023

Hang Yin, Jishan Hou, Chengju Gong and Chen Xu

The behavior of the entities in a small and medium-sized enterprise (SME) cooperation network is influenced by the core enterprise. Addressing the problem of how the network…

Abstract

Purpose

The behavior of the entities in a small and medium-sized enterprise (SME) cooperation network is influenced by the core enterprise. Addressing the problem of how the network vulnerability changes when the core enterprise is attacked is a challenging topic. The purpose of this paper is to reveal the failure process of SME cooperation networks caused by the failure of the core SME from the perspective of cascading failure.

Design/methodology/approach

According to the Torch High Technology Industry Development Center, Ministry of Science & Technology in China, 296 SMEs in Jiangsu province were used to construct an SME cooperation network of technology-based SMEs and an under-loading cascading failure model. The weight-based attack strategy was selected to mimic a deliberate node attack and was used to analyze the vulnerability of the SME cooperation network.

Findings

Some important conclusions are obtained from the simulation analysis: (1) The minimum boundary of node enterprises has a negative relationship with networks' invulnerability, while the breakdown probability has an inverted-U relationship with networks' invulnerability. (2) The combined effect of minimum boundary and breakdown probability indicates that the vulnerability of networks is mainly determined by the breakdown probability; while, minimum boundary helps prevent cascading failure occur. Furthermore, according to the case study, adapting capital needs and resilience in the cooperation network is the core problem in improving the robustness of SME cooperation networks.

Originality/value

This research proposed an under-loading cascading failure model to investigate the under-loading failure process caused by the shortage of resources when the core enterprise fails or withdraws from the SME cooperation network. Two key parameters in the proposed model—minimum capacity and breakdown probability—could serve as a guide for research on the vulnerability of SME cooperation networks. Additionally, practical meanings for each parameter in the proposed model are given, to suggest novel insights regarding network protection to facilitate the robustness and vulnerability in real SME cooperation networks.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 4 April 2023

Chao Ren, Xiaoxing Liu and Ziyan Zhu

The purpose of this paper is to test the invulnerability of the guarantee network at the equilibrium point.

Abstract

Purpose

The purpose of this paper is to test the invulnerability of the guarantee network at the equilibrium point.

Design/methodology/approach

This paper introduces a tractable guarantee network model that captures the invulnerability of the network in terms of cascade-based attack. Furthermore, the equilibrium points are introduced for banks to determine loan origination.

Findings

The proposed approach not only develops equilibrium analysis as an extended perspective in the guarantee network, but also applies cascading failure method to construct the guarantee network. The equilibrium points are examined by simulating experiment. The invulnerability of the guarantee network is quantified by the survival of firms in the simulating progress.

Research limitations/implications

There is less study in equilibrium analysis of the guarantee network. Additionally, cascading failure model is expressed in the presented approach. Moreover, agent-based model can be extended in generating the guarantee network in the future study.

Originality/value

The approach of this paper presents a framework to analyze the equilibrium of the guarantee network. For this, the systemic risk of the whole guarantee network and each node's contribution are measured to predict the probability of default on cascading failure. Focusing on cascade failure process based on equilibrium point, the invulnerability of the guarantee network can be quantified.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 20 December 2023

Akash Gupta and Manjeet Singh

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and…

29

Abstract

Purpose

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and statistical analysis using Weibull distribution to characterize the failure behavior of the GFRE composite laminate.

Design/methodology/approach

Fatigue tests were conducted using a tension–tension loading scheme at a frequency of 2 Hz and a loading ratio (R) of 0.1. The tests were performed at five different stress levels, corresponding to 50%–90% of the ultimate tensile strength (UTS). Failure behavior was assessed through cyclic stress-strain hysteresis plots, dynamic modulus behavior and scanning electron microscopy (SEM) analysis of fracture surfaces.

Findings

The study identified common modes of failure, including fiber pullouts, fiber breakage and matrix cracking. At low stress levels, fiber breakage, matrix cracking and fiber pullouts occurred due to high shear stresses at the fiber–matrix interface. Conversely, at high stress levels, fiber breakage and matrix cracking predominated. Higher stress levels led to larger stress-strain hysteresis loops, indicating increased energy dissipation during cyclic loading. High stress levels were associated with a more significant decrease in stiffness over time, implying a shorter fatigue life, while lower stress levels resulted in a gradual decline in stiffness, leading to extended fatigue life.

Originality/value

This study makes a valuable contribution to understanding fatigue behavior under tension–tension loading conditions, coupled with an in-depth analysis of the failure mechanism in GFRE composite laminate at different stress levels. The fatigue behavior is scrutinized through stress-strain hysteresis plots and dynamic modulus versus normalized cycles plots. Furthermore, the characterization of the failure mechanism is enhanced by using SEM imaging of fractured specimens. The Weibull distribution approach is used to obtain a reliable estimate of fatigue life.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Fakhrozi Che Ani, Muhamed Abdul Fatah Muhamed Mukhtar and Mohamad Riduwan Ramli

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal…

Abstract

Purpose

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal cycling.

Design/methodology/approach

The BGA package samples are subjected to JEDEC Level 1 accelerated moisture treatment (85 °C/85%RH/168 h) with five times reflow at 270 °C. This is followed by multiple thermal cycling from 0 °C to 100 °C for 40 min per cycle, per IPC-7351B standards. For fracture investigation, the cross-sections of the samples are examined and analysed using the dye-and-pry technique and backscattered scanning electron microscopy. The packages' microstructures are characterized using an energy-dispersive X-ray spectroscopy approach. Also, the package assembly is investigated using the Darveaux numerical simulation method.

Findings

The study found that critical strain density is exhibited at the component pad/solder interface of the solder joint located at the most distant point from the axes of symmetry of the package assembly. The fracture mechanism is a crack fracture formed at the solder's exterior edges and grows across the joint's transverse section. It was established that Au content in the formed intermetallic compound greatly impacts fracture growth in the solder joint interface, with a composition above 5 Wt.% Au regarded as an unsafe level for reliability. The elongation of the crack is aided by the brittle nature of the Au-Sn interface through which the crack propagates. It is inferred that refining the solder matrix elemental compound can strengthen and improve the reliability of solder joints.

Practical implications

Inspection lead time and additional manufacturing expenses spent on investigating reliability issues in BGA solder joints can be reduced using the study's findings on understanding the solder joint fracture mechanism.

Originality/value

Limited studies exist on the thermal fracture mechanism of moisture-preconditioned BGA solder joints exposed to both multiple reflow and thermal cycling. This study applied both numerical and experimental techniques to examine the reliability issue.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 March 2024

Maria Ghannoum, Joseph Assaad, Michel Daaboul and Abdulkader El-Mir

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and…

Abstract

Purpose

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and columns. The disposal of plastic wastes in concrete is a viable alternative to manage those wastes while minimizing the environmental impacts associated to recycling, carbon dioxide emissions and energy consumption.

Design/methodology/approach

This paper evaluates the suitability of 2D deterministic and stochastic finite element (FE) modeling to predict the shear strength behavior of reinforced concrete (RC) beams without stirrups. Different concrete mixtures prepared with 1.5%–4.5% PET additions, by volume, are investigated.

Findings

Test results showed that the deterministic and stochastic FE approaches are accurate to assess the maximum load of RC beams at failure and corresponding midspan deflection. However, the crack patterns observed experimentally during the different stages of loading can only be reproduced using the stochastic FE approach. This later method accounts for the concrete heterogeneity due to PET additions, allowing a statistical simulation of the effect of mechanical properties (i.e. compressive strength, tensile strength and Young’s modulus) on the output FE parameters.

Originality/value

Data presented in this paper can be of interest to civil and structural engineers, aiming to predict the failure mechanisms of RC beams containing plastic wastes, while minimizing the experimental time and resources needed to estimate the variability effect of concrete properties on the performance of such structures.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 July 2023

Mianzhi Yang, Qing Hui, Qingru Yang, Mengwei Fan and Xin Li

China has recently introduced a new audit law that aims to increase the scope of audit supervision and raise the standards for preventing risks in auditing national public…

Abstract

Purpose

China has recently introduced a new audit law that aims to increase the scope of audit supervision and raise the standards for preventing risks in auditing national public projects. This paper presents a systematic research study on the causes of audit risks in national public projects and discusses the process by which these causes contribute to the emergence of such risks. Furthermore, the paper investigates the core risk sources in various types of national construction project audit. This paper aims to provide theoretical support for auditors of national construction projects in risk avoidance when conducting audits.

Design/methodology/approach

In this study, the authors carefully selected five national public audit projects from China and performed a comprehensive analysis of 85 relevant audit documentation. The textual analysis was conducted using Nvivo12 software, and the grounded theory approach was adopted for generalization purposes.

Findings

Based on the research results, the findings suggest that there are five key causes contributing to the audit risk of national construction projects: professional competence, risk awareness, management capacity, level of attention and deliberate fraud. The most critical factor identified is management capability, with 59.93% of the data supporting this view. This conclusion was based on an analysis of state-owned enterprises, administrative organs and public institutions. Building upon this, a framework titled “the mechanism of audit risk factors with management capability as the core” was constructed.

Originality/value

This paper employs qualitative analysis methods to examine national construction projects in China, contributing new literature to the theoretical study of audit risk management. The article also provides practical recommendations for auditors on how to mitigate audit risks and improve the quality of audit services in national project governance.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 2000