Search results

1 – 4 of 4
Article
Publication date: 18 November 2021

Naveed Mazhar, Fahad Mumtaz Malik, Raja Amer Azim, Abid Raza, Rameez Khan and Qasim Umar Khan

The purpose of this study is to provide the full-state mathematical model and devise a nonlinear controller for a balloon-supported unmanned aerial vehicle (BUAV).

Abstract

Purpose

The purpose of this study is to provide the full-state mathematical model and devise a nonlinear controller for a balloon-supported unmanned aerial vehicle (BUAV).

Design/methodology/approach

Newtonian mechanics is used to establish the nonlinear mathematical model of the proposed vehicle assembly which incorporates the dynamics of both balloon and quadrotor UAV. A controllable form of the nine degrees of freedom model is derived. Backstepping control is designed for the proposed model and simulations are performed to assess the tracking performance of the proposed control.

Findings

The results show that the proposed methodology works well for smooth trajectories in presence of wind gusts. Moreover, the final mathematical model is affine and various nonlinear control techniques can be used in the future for improved system performance.

Originality/value

Multi-rotor unmanned aerial vehicles (MUAVs) are equipped with controllers but are constrained by smaller flight endurance and payload carrying capability. On the contrary, lighter than air (LTA) aerial vehicles have longer flight times but have poor control performance for outdoor operations. One of the solutions to achieve better flight endurance and payload carrying capability is to augment the LTA balloon to MUAV. The novelty of this research lies in full-order mathematical modeling along with transformation to controllable form for the BUAV assembly.

Details

Assembly Automation, vol. 42 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 22 July 2020

Abid Raza, Fahad Mumtaz Malik, Rameez Khan, Naveed Mazhar and Hameed Ullah

This paper aims to devise a robust controller for the non-linear aircraft model using output feedback control topology in the presence of uncertain aerodynamic parameters.

222

Abstract

Purpose

This paper aims to devise a robust controller for the non-linear aircraft model using output feedback control topology in the presence of uncertain aerodynamic parameters.

Design/methodology/approach

Feedback linearization-based state feedback (SFB) controller is considered along with a robust outer loop control which is designed using Lyapunov’s second method. A high-gain observer (HGO) in accordance with the separation principle is used to implement the output feedback (OFB) control scheme. The robustness of the controller and observer is assessed by introducing uncertain aerodynamics coefficients in the dynamic model. The proposed scheme is validated using MATLAB/SIMULINK.

Findings

The efficacy of the proposed scheme is authenticated with the simulation results which show that HGO-based OFB control achieves the SFB control performance for a small value of the high-gain parameter in the presence of uncertain aerodynamic parameters.

Originality/value

A HGO for the non-linear model of aircraft with uncertain parameters is a novel contribution which could be further used for the unmanned aerial vehicles autopilot, flight trajectory tracking and path following.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 August 2020

Rameez Khan, Fahad Mumtaz Malik, Abid Raza and Naveed Mazhar

The purpose of this paper is to provide a comprehensive and unified presentation of recent developments in skid-steer wheeled mobile robots (SSWMR) with regard to its control…

Abstract

Purpose

The purpose of this paper is to provide a comprehensive and unified presentation of recent developments in skid-steer wheeled mobile robots (SSWMR) with regard to its control, guidance and navigation for the researchers who wish to study in this field.

Design/methodology/approach

Most of the contemporary unmanned ground robot’s locomotion is based upon the wheels. For wheeled mobile robots (WMRs), one of the prominent and widely used driving schemes is skid steering. Because of mechanical simplicity and high maneuverability particularly in outdoor applications, SSWMR has an advantage over its counterparts. Different prospects of SSWMR have been discussed including its design, application, locomotion, control, navigation and guidance. The challenges pertaining to SSWMR have been pointed out in detail, which will seek the attention of the readers, who are interested to explore this area.

Findings

Relying on the recent literature on SSWMR, research gaps are identified that should be analyzed for the development of autonomous skid-steer wheeled robots.

Originality/value

An attempt to present a comprehensive review of recent advancements in the field of WMRs and providing references to the most intriguing studies.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 January 2022

Muhammad Nouman, Ijaz Ahmad, Muhammad Fahad Siddiqi, Farman Ullah Khan, Mohammad Fayaz and Idrees Ali Shah

The financial policies of the modern world corporations and their investment decisions are generally considered as interrelated because the agency problems, associated with the…

Abstract

Purpose

The financial policies of the modern world corporations and their investment decisions are generally considered as interrelated because the agency problems, associated with the debt level and its maturity structure, give rise to incentives for overinvestment or underinvestment. The present study empirically investigates the linkage between debt maturity structure and firm investment in a financially constrained environment, using Pakistan as a case study, to determine how the institutional environment in which firms operate affect these decisions and their linkage.

Design/methodology/approach

The empirical analysis is carried in a panel data setting using panel regression models as the baseline methods. Moreover, generalized methods of moments (GMM) estimators are used, coupled with the instrumental variables approach, for robustness and improving the efficiency and consistency of estimates.

Findings

Results suggest that firms rely more on short financing in Pakistan. Thus, given the capital structure which is characterized by higher proportion of short-term financing, the higher level of leverage is less likely to cause underinvestment problem. However, the underinvestment problem do persists in the firms that have higher portion of long-term debt. These findings imply that the debt-overhang problem may persist even in the financially constrained environments where attractive investment opportunities are limited, and long-term financing is difficult to acquire.

Originality/value

This study contributes to the literature by revealing how corporate investment and financing decisions and their linkage is influenced by the institutional environment of the less developed countries which is characterized by underdeveloped financial markets, inefficient legal system and weak investor protection system.

Details

International Journal of Emerging Markets, vol. 18 no. 10
Type: Research Article
ISSN: 1746-8809

Keywords

1 – 4 of 4