Search results

1 – 10 of 320
Open Access
Article
Publication date: 20 March 2023

Tomoharu Ishikawa, Junki Tsunetou, Yoshiko Yanagida, Mutsumi Yanaka, Minoru Mitsui, Kazuya Sasaki and Miyoshi Ayama

The study aimed to clarify differences in fabric hand perceptions among Japanese and Chinese participants and implement online shopping strategies that enable consumers to easily…

Abstract

Purpose

The study aimed to clarify differences in fabric hand perceptions among Japanese and Chinese participants and implement online shopping strategies that enable consumers to easily recognize fabric texture.

Design/methodology/approach

Forty (20 Japanese and 20 Chinese) participants knowledgeable about clothing and fabric were recruited. Participants evaluated fabric by sight and touch in a visuotactile experiment (VTE). The stimulus material comprised 39 fabric samples representing a broad range of fabric attributes (7 fibers, 5 weaving/knitting techniques and 3 yarn thicknesses and density). A Mann–Whitney U test and a factor analysis were conducted to determine differences in responses for the different fabric variables.

Findings

The fabric hand perceptions factors were similar between both groups. Japanese participants showed a stronger preference for fabrics that felt wet. Japanese participants’ fabric hand perceptions had a 3-factor structure, while Chinese participants had a 2-factor structure. Chinese participants regarded “crisp” as perceptually and linguistically equivalent to “stretchy.”

Originality/value

The study’s findings suggest that Chinese people have stronger preferences in fabrics than Japanese people do. Japanese people evaluate fabric hand in a more nuanced manner than Chinese individuals, including discerning different fabric attributes, such as fiber and yarn thickness and density. Thus, nationality may influence fabric hand perceptions more than fabric knowledge does. Specifically, in evaluating “crispness,” the results required further analysis because differences in nationality may have affected evaluations regarding perception and linguistic perspectives. The findings provide design guidelines for implementing online shopping strategies adapted to each participant group.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 27 April 2022

Elina Ilén, Farid Elsehrawy, Elina Palovuori and Janne Halme

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is…

2707

Abstract

Purpose

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is prerequisite for the product acceptance of e-textiles, has been rarely examined. This paper aims to report a systematic study of the laundry durability of solar cells embedded in textiles.

Design/methodology/approach

This research included small commercial monocrystalline silicon solar cells which were encapsulated with functional synthetic textile materials using an industrially relevant textile lamination process and found them to reliably endure laundry washing (ISO 6330:2012). The energy harvesting capability of eight textile laminated solar cells was measured after 10–50 cycles of laundry at 40 °C and compared with light transmittance spectroscopy and visual inspection.

Findings

Five of the eight textile solar cell samples fully maintained their efficiency over the 50 laundry cycles, whereas the other three showed a 20%–27% decrease. The cells did not cause any visual damage to the fabric. The result indicates that the textile encapsulated solar cell module provides sufficient protection for the solar cells against water, washing agents and mechanical stress to endure repetitive domestic laundry.

Research limitations/implications

This study used rigid monocrystalline silicon solar cells. Flexible amorphous silicon cells were excluded because of low durability in preliminary tests. Other types of solar cells were not tested.

Originality/value

A review of literature reveals the tendency of researchers to avoid standardized textile washing resistance testing. This study removes the most critical obstacle of textile integrated solar energy harvesting, the washing resistance.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 18 June 2019

Hiroko Yokura and Sachiko Sukigara

For over a century, traditional Japanese cotton crepe fabrics have been popular for men’s underwear in the humid summer. Now, consumer demand is for crepe fabrics that are more…

2886

Abstract

Purpose

For over a century, traditional Japanese cotton crepe fabrics have been popular for men’s underwear in the humid summer. Now, consumer demand is for crepe fabrics that are more attractive, reflecting a shift in use from underwear to women’s dresses. The purpose of this paper is to clarify how the structures of the crepe and its constituent yarns affect the physical properties, handle and silhouette formability of crepe fabrics for dresses.

Design/methodology/approach

Three plain-weave gray fabrics were finished by four different processes to change their crepe structures. The mechanical and surface properties of the fabrics were measured using the Kawabata evaluation system for fabrics. The primary hand values and silhouette formability of the fabrics were calculated using conversion equations based on the physical properties. The handle of the crepe fabrics and the aesthetic appearance of flared collars made of them were assessed by female students using the semantic differential method.

Findings

Comparing the fabrics made from the same gray fabric, the piqué crepe fabrics showed larger Hari (anti-drape) and Shari (crispness) than the others. The subjective hand value of softness was closely related to fabric thickness. The assessors preferred the fine piqué crepe fabrics over the wide piqué fabrics regarding both the tactile feeling of the fabrics and the aesthetic appearance of the flared collars. The attractiveness of the flared collars was dominated by the shear stiffness of the fabrics.

Originality/value

The fine piqué crepe fabric made from fine yarns produced a more preferable handle. The fine piqué fabric made from thicker yarns produced flared collars with silhouettes that are more attractive. This indicates that the fine piqué structure is a positive feature that makes the fabric suitable for various types of dresses.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 13 December 2022

Chau Thi Ngoc Pham, Hung Ngoc Phan, Thao Thanh Hoang, Tien Thi Thuy Dao and Huong Mai Bui

The health and environmental hazards associated with synthetic dyes have led to a revival of natural dyes that are non-toxic, environmentally benign and coupled with various…

1184

Abstract

Purpose

The health and environmental hazards associated with synthetic dyes have led to a revival of natural dyes that are non-toxic, environmentally benign and coupled with various functions. The study aims to investigate and develop the potentiality of a popular herb called Chromolaena odorata (C. odorata) as a sustainable and stable dyestuff in textiles.

Design/methodology/approach

Natural colorant extracted from C. odorata leaves is used to dye the worsted fabric, which is one of the premier end-use of wool in fashion, via the padding method associated with pre-, simultaneous and post-mordanting with chitosan, tannic acid and copper sulfate pentahydrate. The effects of extraction, dyeing and mordanting processes on fabric’s color strength K/S and color difference ΔECMC are investigated via International Commission on Illumination’s L*a*b* color space, Fourier transform infrared spectroscopy, scanning electron microscope, color fastness to washing, rubbing, perspiration and light.

Findings

The results obtained indicate extraction with ethanol 90% with a solid/liquid ratio of 1:5 within 1 h, and coloration with a liquor ratio of 1:5 (pH 5) within 2 h under padding pressure of 0.3 MPa are the most effective for coloring worsted fabric.

Practical implications

The C. odorata’s application as a highly effective dyestuff possessing good colorimetric effectiveness has expanded this herb's economic potential, contributing partly to economic growth and adding value to wool in global supply chain.

Originality/value

C. odorata dyestuff has prevailed over other natural colorants because of its impressive color fastness against washing, rubbing, perspiration and especially color stability for pH change.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 4 December 2017

Natalie Ishmael, Anura Fernando, Sonja Andrew and Lindsey Waterton Taylor

This paper aims to provide an overview of the current manufacturing methods for three-dimensional textile preforms while providing experimental data on the emerging techniques of…

6930

Abstract

Purpose

This paper aims to provide an overview of the current manufacturing methods for three-dimensional textile preforms while providing experimental data on the emerging techniques of combining yarn interlocking with yarn interlooping.

Design/methodology/approach

The paper describes the key textile technologies used for composite manufacture: braiding, weaving and knitting. The various textile preforming methods are suited to different applications; their capabilities and end performance characteristics are analysed.

Findings

Such preforms are used in composites in a wide range of industries, from aerospace to medical and automotive to civil engineering. The paper highlights how the use of knitting technology for preform manufacture has gained wider acceptance due to its flexibility in design and shaping capabilities. The tensile properties of glass fibre knit structures containing inlay yarns interlocked between knitted loops are given, highlighting the importance of reinforcement yarns.

Originality/value

The future trends of reinforcement yarns in knitted structures for improved tensile properties are discussed, with initial experimental data.

Details

Research Journal of Textile and Apparel, vol. 21 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 4 August 2021

Ian L. Gordon, Seth Casden and Michael R. Hamblin

This study aims to test the effects of Celliant armbands on grip strength in subjects with chronic wrist and elbow pain. Celliant® is a functional textile fabric containing…

Abstract

Purpose

This study aims to test the effects of Celliant armbands on grip strength in subjects with chronic wrist and elbow pain. Celliant® is a functional textile fabric containing minerals that emit infrared radiation (IR) in response to body heat. IR-emitting fabrics have biological effects including the reduction of pain and inflammation and the stimulation of muscle function.

Design/methodology/approach

A randomized placebo-controlled trial recruited 80 subjects (40 per group) with a six-month history of chronic wrist or elbow pain (carpal tunnel syndrome, epicondylitis or arthritis) to wear an armband (real Celliant or placebo fabric) on the affected wrist or elbow for two weeks. Grip strength was measured by a dynamometer before and after the two-week study.

Findings

For the placebo group, the mean grip strength increased from 47.95 ± 25.14 (baseline) to 51.69 ± 27.35 (final), whereas for the Celliant group, it increased from 46.3 ± 22.02 to 54.1 ± 25.97. The mean per cent increase over the two weeks was +7.8% for placebo and +16.8% for Celliant (p = 0.0372). No adverse effects was observed.

Research limitations/implications

Limitations include the wide variation in grip strength in the participants at baseline measurement, which meant that only the percentage increase between baseline and final measurements showed a significant difference. Moreover, no subjective measurements of pain or objective neurophysiology testes was done.

Practical implications

Celliant armbands are easy to wear and have not been shown to produce any adverse effects. Therefore, there appears to be no barrier to prevent widespread uptake.

Social implications

IR-emitting textiles have been studied for their beneficial effects, both in patients diagnosed with various disorders and also in healthy volunteers for health and wellness purposes. Although there are many types of textile technology that might be used to produce IR-emitting fabrics, including coating of the fabric with a printed layer of ceramic material, incorporating discs of mineral into the garment, the authors feel that incorporating ceramic particles into the polymer fibers from which the fabric is woven is likely to be the most efficient way of achieving the goal.

Originality/value

Celliant armbands appear to be effective in painful upper limb inflammatory disorders, and further studies are warranted. The mechanism of action is not completely understood, but the hypothesis that the emitted IR radiation is absorbed by nanostructured intracellular water provides some theoretical justification.

Open Access
Article
Publication date: 28 July 2021

Jens Laage-Hellman, Frida Lind and Andrea Perna

This paper aims to explore the role and meaning of openness for the purpose of enhancing the understanding of collaborative innovation from an industrial network perspective.

1302

Abstract

Purpose

This paper aims to explore the role and meaning of openness for the purpose of enhancing the understanding of collaborative innovation from an industrial network perspective.

Design/methodology/approach

The theoretical framework is based on the Industrial Network Approach, and the concepts of activity links, resource ties and actor bonds are used as a starting point for capturing the content and dynamics of the interaction. The empirical part consists of five case studies: two historical and three contemporary cases dealing with collaborative innovation projects. The cases are analyzed with regard to openness in business relationships and their connections in the network.

Findings

The main contribution is a conceptualization of openness in business relationships and relationship connections. The paper describes various forms and contents of openness – and closeness. It is postulated that the concept of openness can be used as an analytical tool for digging deeper into relationship and network-related issues of relevance to firms’ behavior in the context of collaborative innovation. Openness, as it is defined in this paper, is also put forward as an explanation of why (or why not) collaborative innovation projects become successful.

Originality/value

The conceptualization of openness differs from openness as it is commonly described in the open innovation literature. There, openness is the opposite of closeness, that is, a pattern where the innovation activities take place internally within the company. In this paper, openness, instead, has to do with how firms interact with other network actors in the context of collaborative innovation.

Details

Journal of Business & Industrial Marketing, vol. 36 no. 13
Type: Research Article
ISSN: 0885-8624

Keywords

Open Access
Article
Publication date: 29 May 2019

Marjo Määttänen, Sari Asikainen, Taina Kamppuri, Elina Ilen, Kirsi Niinimäki, Marjaana Tanttu and Ali Harlin

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while…

5461

Abstract

Purpose

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while recycling textile fibre. More knowledge is needed for colour management in a circular economy approach.

Design/methodology/approach

The research included the use of different dye types in a cotton dyeing process, the process for decolourizing and the results. Two reactive dyes, two direct dyes and one vat dye were used in the study. Four chemical treatment sequences were used to evaluate colour removal from the dyed cotton fabrics, namely, HCE-A, HCE-P-A, HCE-Z-P-A and HCE-Y-A.

Findings

The objective was to evaluate how different chemical refining sequences remove colour from direct, reactive and vat dyed cotton fabrics, and how they influence the specific cellulose properties. Dyeing methods and the used refining sequences influence the degree of colour removal. The highest achieved final brightness of refined cotton materials were between 71 and 91 per cent ISO brightness, depending on the dyeing method used.

Research limitations/implications

Only cotton fibre and three different colour types were tested.

Practical implications

With cotton waste, it appears to be easier to remove the colour than to retain it, especially if the textile contains polyester residues, which are desired to be removed in the textile refining stage.

Originality/value

Colour management in the CE context is an important new track to study in the context of the increasing amount of textile waste used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 23 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 13 March 2024

Tao Wang, Shaoliang Wu, Hengqiong Jia, Shanqing Peng, Haiyan Li, Piyan Shao, Zhao Wei and Yi Shi

During the construction process of the China Railway Track System (CRTS) I type filling layer, the nonwoven fabric bags have been used as grouting templates for cement asphalt…

Abstract

Purpose

During the construction process of the China Railway Track System (CRTS) I type filling layer, the nonwoven fabric bags have been used as grouting templates for cement asphalt (CA) emulsified mortar. The porous structure of nonwoven fabrics endowed the templates with breathability and water permeability. The standard requires that the volume expansion rate of CA mortar must be controlled within 1%–3%, which can generate expansion pressure to ensure that the cavities under track slabs are filled fully. However, the expansion pressure caused some of the water to seep out from the periphery of the filling bag, and it would affect the actual mix proportion of CA mortar. The differences in physical and mechanical properties between the CA mortar under track slabs and the CA mortar formed in the laboratory were studied in this paper. The relevant results could provide important methods for the research of filling layer materials for CRTS I type and other types of ballastless tracks in China.

Design/methodology/approach

During the inspection of filling layer, the samples of CA mortar from different working conditions and raw materials were taken by uncovering the track slabs and drilling cores. The physical and mechanical properties of CA mortar under the filling layer of the slab were systematically analyzed by testing the electrical flux, compressive strength and density of mortar in different parts of the filling layer.

Findings

In this paper, the electric flux, the physical properties and mechanical properties of different parts of CA mortar under the track slab were investigated. The results showed that the density, electric flux and compressive strength of CA mortar were affected by the composition of raw materials for dry powders and different parts of the filling layer. In addition, the electrical flux of CA mortar gradually decreased within 90 days’ age. The electrical flux of samples with the thickness of 54 mm was lower than 500 C. Therefore, the impermeability and durability of CA mortar could be improved by increasing the thickness of filling layer. Besides, the results showed that the compressive strength of CA mortar increased, while the density and electric flux decreased gradually, with the prolongation of hardening time.

Originality/value

During 90 days' age, the electrical flux of the CA mortar gradually decreased with the increase of specimen thickness and the electrical flux of the specimens with the thickness of 54 mm was lower than 500 C. The impermeability and durability of the CA mortar could be improved by increasing the thickness of filling layer. The proposed method can provide reference for the further development and improvement of CRTS I and CRTS II type ballastless track in China.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 5 September 2016

Mario Rosario Chiarelli, Vincenzo Binante, Stefano Botturi, Andrea Massai, Jan Kunzmann, Angelo Colbertaldo and Diego Giuseppe Romano

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of…

1124

Abstract

Purpose

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of thin carbon and glass substrates on which some Macro Fiber Composite® (MFC) piezoelectric patches are glued. A proper design and manufacturing of the hybrid specimens as well as testing activities have been performed. The research activity has been carried out under the FutureWings project, funded by the European Commission within the 7th Framework.

Design/methodology/approach

The paper describes the basic assumptions made to define specimen geometries and to carry out experimental tests. Finite element (FE) results and experimental data (laser technique measurements) have been compared: it shows very good agreement for the displacements’ distribution along the specimens.

Findings

Within the objectives of the project, the study of passive and active deformation characteristics of the hybrid composite material has provided reference technical data and has allowed for the correct adaptation of the FE models. More in particular, using the hybrid specimens, both the bending deformations and the torsion deformations have been studied.

Practical implications

The deformation capability of the hybrid specimens will be used in the development of prototypical three-dimensional structures, that, through the electrical control of the MFC patches, will be able to change the curvature of their cross section or will be able to change the angle of torsion along their longitudinal axis.

Originality/value

The design of nonstandard specimens and the tests executed represent a novelty in the field of structures using piezoelectric actuators. The numerical and experimental data of the present research constitute a small step forward in the field of smart materials technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 320