Search results

1 – 3 of 3
Article
Publication date: 4 May 2012

Dhafer Abdul‐Ameer Shnawah, Mohd Faizul Mohd Sabri, Irfan Anjum Badruddin and Fa Xing Che

The purpose of this paper is to investigate the effect of Al addition on the bulk alloy microstructure and tensile properties of the low Ag‐content Sn‐1Ag‐0.5Cu (SAC105) solder…

Abstract

Purpose

The purpose of this paper is to investigate the effect of Al addition on the bulk alloy microstructure and tensile properties of the low Ag‐content Sn‐1Ag‐0.5Cu (SAC105) solder alloy.

Design/methodology/approach

The Sn‐1Ag‐0.5Cu‐xAl (x=0, 1, 1.5 and 2 wt.%) bulk solder specimens with flat dog‐bone shape were used for tensile testing in this work. The specimens were prepared by melting purity ingots of Sn, Ag, Cu and Al in an induction furnace. Subsequently, the molten alloys were poured into pre‐heated stainless steel molds, and the molds were naturally air‐cooled to room temperature. Finally, the molds were disassembled, and the dog‐bone samples were removed. The solder specimens were subjected to tensile testing on an INSTRON tester with loading rate 10−3 s−1. The microstructural analysis was carried out using scanning electron microscopy/Energy dispersive X‐ray spectroscopy. Electron Backscatter Diffraction (EBSD) analysis was used to identify the IMC phases. To obtain the microstructure, the solder samples were prepared by dicing, molding, grinding and polishing processes.

Findings

The addition of Al to the SAC105 solder alloy suppresses the formation of Ag3Sn and Cu6Sn5 IMC particles and leads to the formation of larger Al‐rich and Al‐Cu IMC particles and a large amount of fine Al‐Ag IMC particles. The addition of Al also leads to refining of the primary β‐Sn grains. The addition of Al results in a significant increase on the elastic modulus and yield strength. On the other hand, the addition of Al drastically deteriorates the total elongation.

Originality/value

The addition of Al to the low Ag‐content SAC105 solder alloy has been discussed for the first time. This work provides a starting‐point to study the effect of Al addition on the drop impact and thermal cycling reliability of the SAC105 alloy.

Details

Microelectronics International, vol. 29 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 14 September 2012

Dhafer Abdul Ameer Shnawah, Suhana Binti Mohd Said, Mohd Faizul Bin Mohd Sabri, Irfan Anjum Badruddin and Fa Xing Che

The purpose of this paper is to investigate the effects of small additions (0.1 and 0.3 wt%) of Fe on the bulk alloy microstructure and tensile properties of low Ag‐content…

Abstract

Purpose

The purpose of this paper is to investigate the effects of small additions (0.1 and 0.3 wt%) of Fe on the bulk alloy microstructure and tensile properties of low Ag‐content Sn‐1Ag‐0.5Cu lead‐free solder alloy.

Design/methodology/approach

Sn‐1Ag‐0.5Cu, Sn‐3Ag‐0.5Cu and Sn‐1Ag‐0.5Cu containing 1 and 3 wt.% Fe solder specimens were prepared by melting pure ingots of Sn, Ag, Cu and Fe in an induction furnace and subsequently remelting and casting to form flat dog‐bone shaped specimens for tensile testing. The solder specimens were subjected to tensile testing using an INSTRON tester with a loading rate 10‐3 s‐1. To obtain the microstructure, the solder samples were prepared by dicing, molding, grinding and polishing processes. The microstructural analysis was carried out using scanning electron microscopy/Energy Dispersive X‐ray spectroscopy. Electron backscatter diffraction (EBSD) analysis was used to identify the IMC phases.

Findings

In addition to large primary β‐Sn grains, the addition of Fe to the SAC105 alloy formed large circular shaped FeSn2 IMC particles located in the eutectic regions. This had a significant effect in reducing the elastic modulus and yield strength and maintaining the elongation at the SAC105 level. Moreover, the additions of Fe resulted in the inclusion of Fe in the Ag3Sn and Cu6Sn5 IMC particles. The additions of Fe did not have any significant effect on the melting behaviour.

Research limitations/implications

The paper provides a starting‐point for studying the effect of minor additions of Fe on the drop impact and thermal cycling reliability of SAC105 alloy considering the bulk alloy microstructure and tensile properties. Further investigations should be undertaken in the future.

Originality/value

The effect of Fe addition on the bulk alloy microstructure and tensile properties of the SAC105 alloy has been studied for the first time. Fe‐containing SAC105 alloy may have the potential to increase the drop impact and thermal cycling reliability compared with the standard SAC105 alloy.

Details

Soldering & Surface Mount Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 12 October 2018

Carlos Cavalheiro, Claudia Ruiz-Capillas, Ana Maria Herrero, Francisco Jiménez-Colmenero, Cristiano Ragagnin de Menezes and Leadir Lucy Fries

This study aims to protect Lactobacillus plantarum and Enterococcus faecium encapsulated in alginate beads during stress treatments, such as high temperatures and concentrations…

Abstract

Purpose

This study aims to protect Lactobacillus plantarum and Enterococcus faecium encapsulated in alginate beads during stress treatments, such as high temperatures and concentrations of sodium chloride (NaCl) and sodium nitrite (NaNO2).

Design/methodology/approach

Free and encapsulated probiotics were subjected to 70 and 80°C during 5, 10, 20 and 30 min. In addition, the probiotics were subjected to concentrations of 0.5, 1.0, 2.5 and 5.0 per cent NaCl and 0.5 and 1.0per cent of NaNO2.

Findings

Free Lactobacillus plantarum was more resistant to heat than free Enterococcus faecium. Alginate-encapsulated Lactobacillus plantarum (ALP) also was more resistant to heat treatments than alginate-encapsulated Enterococcus faecium (AEF). After 30 min at 70°C, ALP showed levels about 6.9 log CFU/g while AEF presented 4.3 log CFU/g (p = 0.005). However, at 80°C, ALP maintained levels higher than 6 log CFU/g for up to 10 min, while AEF was able to maintain those levels only for approximately 5 min (p = 0.003). Encapsulation process provided adequate protection for both probiotics against NaCl. In relation to NaNO2 concentrations, 0.5 and 1.0 per cent reduced viability of both probiotics (p = 0.014), either as free cells or as alginate-encapsulated forms.

Practical implications

Alginate beads containing probiotics is an interesting alternative for application in foods such as cooked meat products.

Originality/value

Alginate beads elaborated with milk powder, inulin and trehalose were effective to protect probiotics in stress situations similar to those can be found in the processing of foods, such as cooked meat products.

Details

Nutrition & Food Science, vol. 49 no. 2
Type: Research Article
ISSN: 0034-6659

Keywords

1 – 3 of 3