Search results

1 – 8 of 8
Open Access
Book part
Publication date: 4 May 2018

Vera Viena, Elvitriana, Muhammad Nizar, Sari Wardani and Suhendrayatna

Purpose – In this research, we have prepared activated carbon (AC) from the waste of banana peels (Musa acuminate L.) using potassium hydroxide (KOH) for carbon monoxide (CO…

Abstract

Purpose – In this research, we have prepared activated carbon (AC) from the waste of banana peels (Musa acuminate L.) using potassium hydroxide (KOH) for carbon monoxide (CO) adsorption from motorcycle gas emission.

Design/Methodology/Approach – The activation was conducted using a chemical activator (KOH) at various concentrations of 1, 2, and 3 N for 1, 2, and 3 h, respectively. Characteristics of banana peels AC (BPAC) produced were analyzed using the Fourier-transform infra-red spectroscopy and scanning electron microscopy.

Findings – Results showed that KOH concentration and activation time strongly affected the CO adsorption and opening of the AC surface pore. There was an increase in the CO sorption when the KOH concentration was increased up to 3 N concentration. The highest CO adsorption from the emission occurred at 70.95% under KOH concentration of 3 N during the 3-h preparation.

Research Limitations/Implications – BPAC has been used as an adsorbent for only CO from motorcycle gas emission but not as an adsorbent for HC, NO, NOx, or H2S.

Practical Implications – BPAC can be used as the potential adsorbent for the removal of CO from motorcycle gas emission, and it is an environmental friendly, low cost, and easy to make adsorbent.

Originality/Value – In this study, the AC is made from biomass and is used in wastewater treatment, but limited studies are found on the removal of CO from motorcycle gas emission.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Article
Publication date: 24 August 2023

Chiara Bertolin and Filippo Berto

This article introduces the Special Issue on Sustainable Management of Heritage Buildings in long-term perspective.

Abstract

Purpose

This article introduces the Special Issue on Sustainable Management of Heritage Buildings in long-term perspective.

Design/methodology/approach

It starts by reviewing the gaps in knowledge and practice which led to the creation and implementation of the research project SyMBoL—Sustainable Management of Heritage Buildings in long-term perspective funded by the Norwegian Research Council over the 2018–2022 period. The SyMBoL project is the motivation at the base of this special issue.

Findings

The editorial paper briefly presents the main outcomes of SyMBoL. It then reviews the contributions to the Special Issue, focussing on the connection or differentiation with SyMBoL and on multidisciplinary findings that address some of the initial referred gaps.

Originality/value

The article shortly summarizes topics related to sustainable preservation of heritage buildings in time of reduced resources, energy crisis and impacts of natural hazards and global warming. Finally, it highlights future research directions targeted to overcome, or partially mitigate, the above-mentioned challenges, for example, taking advantage of no sestructive techniques interoperability, heritage building information modelling and digital twin models, and machine learning and risk assessment algorithms.

Open Access
Article
Publication date: 16 December 2022

Uchenna Luvia Ezeamaku, Chinyere Ezekannagha, Ochiagha I. Eze, Nkiru Odimegwu, Angela Nwakaudu, Amarachukwu Okafor, Innocent Ekuma and Okechukwu Dominic Onukwuli

The impact of potassium permanganate (KMnO4) treatment on the tensile strength of an alkali-treated pineapple leaf fiber (PALF) reinforced with tapioca-based bio resin (cassava…

745

Abstract

Purpose

The impact of potassium permanganate (KMnO4) treatment on the tensile strength of an alkali-treated pineapple leaf fiber (PALF) reinforced with tapioca-based bio resin (cassava starch) was studied.

Design/methodology/approach

The PALF was exposed to sodium hydroxide (NaOH) treatment in varying concentrations of 2.0, 3.7, 4.5 and 5.5g prior to the fiber treatment with KMnO4. The treated and untreated PALFs were reinforced with tapioca-based bio resin. Subsequently, they were subjected to Fourier transform infrared (FTIR) and tensile test analysis.

Findings

The FTIR analysis of untreated PALF revealed the presence of O-H stretch, N-H stretch, C=O stretch, C=O stretch and H-C-H bond. The tensile test result confirmed the highest tensile strength of 35N from fiber that was reinforced with 32.5g of cassava starch and treated with 1.1g of KMnO4. In comparison, the lowest tensile strength of 15N was recorded for fiber reinforced with 32.5g of cassava starch without KMnO4 treatment.

Originality/value

Based on the results, it could be deduced that despite the enhancement of bioresin (cassava starch) towards strength-impacting on the fibers, KMnO4 treatment on PALF is very vital for improved tensile strength of the fiber when compared to untreated fibers. Hence, KMnO4 treatment on alkali-treated natural fibers preceding reinforcement is imperative for bio-based fibers.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 3
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 30 September 2019

Andrea Mantelli, Marinella Levi, Stefano Turri and Raffaella Suriano

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will…

2764

Abstract

Purpose

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will enable the rapid fabrication of environmentally sustainable structures with complex shapes and good mechanical properties. These three-dimensional printed objects will have several application fields, such as street furniture and urban renewal, thus promoting a circular economy model.

Design/methodology/approach

For this purpose, a low-cost liquid deposition modeling technology was used to extrude photo-curable and thermally curable composite inks, composed of an acrylate-based resin loaded with different amounts of mechanically recycled glass fiber reinforced composites (GFRCs). Rheological properties of the extruded inks and their printability window and the conversion of cured composites after an ultraviolet light (UV) assisted extrusion were investigated. In addition, tensile properties of composites remanufactured by this UV-assisted technology were studied.

Findings

A printability window was found for the three-dimensional printable GFRCs inks. The formulation of the composite printable inks was optimized to obtain high quality printed objects with a high content of recycled GFRCs. Tensile tests also showed promising mechanical properties for printed GFRCs obtained with this approach.

Originality/value

The novelty of this paper consists in the remanufacturing of GFRCs by the three-dimensional printing technology to promote the implementation of a circular economy. This study shows the feasibility of this approach, using mechanically recycled EoL GFRCs, composed of a thermoset polymer matrix, which cannot be melted as in case of thermoplastic-based composites. Objects with complex shapes were three-dimensional printed and presented here as a proof-of-concept.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 21 January 2020

Abid Haleem, Mohd Imran Khan, Shahbaz Khan and Abdur Rahman Jami

Halal is an emerging business sector and is steadily gaining popularity among scholars and practitioners. The purpose of this paper is to critically evaluate and review the…

5173

Abstract

Purpose

Halal is an emerging business sector and is steadily gaining popularity among scholars and practitioners. The purpose of this paper is to critically evaluate and review the reported literature in the broad area of Halal using bibliometric technique and network analysis tools. Moreover, this paper also proposes future research directions in the field of Halal.

Design/methodology/approach

This paper employed a systematic review technique followed by bibliometric analysis to gain insight and to evaluate the research area associated with Halal. Furthermore, data mining techniques are used for analysing the concerned article title, keywords and abstract of 946 research articles obtained through the Scopus database. Finally, network analysis is used to identify significant research clusters.

Findings

This study reports top authors contributing to this area, the key sub-research areas and the influential works based on citations and PageRank. We identified from the citation analysis that major influential works of Halal are from the subject area of biological science and related areas. Further, this study reports established and emerging research clusters, which provide future research directions.

Research limitations/implications

Scopus database is used to conduct a systematic review and corresponding bibliometric study; the authors might have missed some peer-reviewed studies not reported in Scopus. The selection of keywords for article search may not be accurate for the multi-disciplinary Halal area. Also, the authors have not considered the banking/financial aspects of Halal. The proposed four research clusters may inform potential researcher towards supporting the industry.

Originality/value

The novelty of the study is that no published study has reported the bibliometric study and network analysis techniques in the area of Halal.

Details

Modern Supply Chain Research and Applications, vol. 2 no. 1
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Book part
Publication date: 4 May 2018

Suhendrayatna, Muhammad Zaki, Annisa Delima Habdani Harahap and Fitriani Verantika

Purpose – In this study, the possibility of the application of rice husks for adsorbing Mn(II) ion in the water phase has been studied.Design/Methodology/Approach – Experimental…

Abstract

Purpose – In this study, the possibility of the application of rice husks for adsorbing Mn(II) ion in the water phase has been studied.

Design/Methodology/Approach – Experimental studies have been initiated by preparing activated carbon from rice husks. The activation of rice husks was done using both physical and chemical treatment methods through heating at 110 °C and washing with citric acid activator at 0.2 M, 0.4 M, and 0.6 M. The adsorption tests were conducted as two part tests: preliminary and primary. The preliminary test was conducted to choose the best condition of four independent variables, i.e., contact time (0–120 minutes), activator concentrations (0.2, 0.4, and 0.6 M), initial Mn(II) concentrations (10, 20, 50, 100, 200, and 400 mg/L), and adsorption temperatures (30, 47, and 67 °C).

Findings – By identifying the substituted groups using Fourier Transform Infrared Spectroscopy after activation with citric acid, it was found that the highest transmittance percentage was present in activated carbon with 0.2 M of citric acid. The best adsorption capacity and efficiency was 13.87 mg/g and 79.60%, respectively, which were obtained at 200 mg/L initial concentration with a 0.2 M citric acid concentration for 120 min contact time at 47 °C. These results lead to a conclusion that rice husks after activation with citric acid can be applied as an adsorbent for Mn(II) adsorption in the water phase.

Research Limitations/Implications – The activated carbon produced was only applicable for the adsorption of Mn(II) ions from the water phase, but not applicable for the adsorption of other heavy metals ions.

Practical Implications – Rice husks were potentially prepared as an adsorbent for Mn(II) ion adsorption in the water phase that was low cost, environmental friendly, and easy to prepare.

Originality/Value – Activated carbon prepared from biomass was mostly carried out using acids at high concentrations while the study was conducted using weak acids (citric acid) at low concentrations.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Book part
Publication date: 4 May 2018

Intan Lestari

Purpose – The purpose of this paper to immobilization provides biosorbent particle with density and mechanichal strength, immobilization can save the cost of separating from…

Abstract

Purpose – The purpose of this paper to immobilization provides biosorbent particle with density and mechanichal strength, immobilization can save the cost of separating from biomass, can be regeneration and to increase adsorption capacity for metal ions.

Design/Methodology/Approach – The parameters affecting the adsorption, such as initial metal ion concentration, pH, contact time, and temperature, were studied. The analysis of biosorbent functional group was carried out by Fourier Transform Infrared Spectroscopy, SEM-EDX, for elemental analysis.

Findings – Optimum pH condition for biosorption Cd(II) was pH 5, contact time was 45 min, and initial concentration was 250 mg/L. Biosorbent analysis was characterized using SEM-EDX and FTIR analysis. Kinetics adsorption was studied and analyzed in terms of the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. The result showed that the biosorption for Cd(II) ion followed the pseudo-second-order kinetic model. Biosorption data of Cd(II) ion at 300°K, 308°K, and 318°K was analyzed with Temkin, Langmuir, and Freundlich isotherms. Biosorption of Cd(II) by durian seed immobilization in alginate according to the Langmuir isotherm equation provided a coefficient correlation of r2 = 0.939 and maximum capacity biosorption of 25.05 mg/g.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Article
Publication date: 5 November 2021

Darko Lovrec and Vito Tič

Apart from the basic material properties of liquid lubricants, such as, e.g., the viscosity and density of the hydraulic fluid, it is also important to have information regarding…

2909

Abstract

Purpose

Apart from the basic material properties of liquid lubricants, such as, e.g., the viscosity and density of the hydraulic fluid, it is also important to have information regarding the electrical properties of the fluid used. The latter is closely related to the purpose, type, structure, and conditions of use of a hydraulic system, especially the powertrain design and fluid condition monitoring. The insulating capacity of the hydraulic fluid is important in cases where the electric motor of the pump is immersed in the fluid. In other cases, on the basis of changing the electrical conductive properties of the hydraulic fluid, we can refer its condition, and, on this basis, the degree of degradation.

Design/methodology/approach

The paper first highlights the importance of knowing the electrical properties of hydraulic fluids and then aims to compare these properties, such as the breakdown voltage of commonly used hydraulic mineral oils and newer ionic fluids suitable for use as hydraulic fluids.

Findings

Knowledge of this property is crucial for the design approach of modern hydraulic compact power packs. In the following, the emphasis is on the more advanced use of known electrical quantities, such as electrical conductivity and the dielectric constant of a liquid.

Originality/value

Based on the changes in these quantities, we have the possibility of real-time monitoring the hydraulic fluid condition, on the basis of which we judge the degree of fluid degradation and its suitability for further use.

Details

Industrial Lubrication and Tribology, vol. 74 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 8 of 8