Search results

1 – 10 of 264
Article
Publication date: 12 December 2023

Ziru Zhou, Songlin Zheng, Jiahuan Chen, Ting Zhang, Zhen He and Yuxin Wang

The high specific strength makes magnesium alloys have a wide range of applications in aerospace, military, automotive, marine and construction industries. However, its poor…

Abstract

Purpose

The high specific strength makes magnesium alloys have a wide range of applications in aerospace, military, automotive, marine and construction industries. However, its poor corrosion resistance and weldability have limited its development and application. Friction stir welding (FSW) can effectively avoid the defects of fusion welding. However, the microstructure, mechanical properties and corrosion behavior of FSW joints in magnesium alloys vary among different regions. The purpose of this paper is to review the corrosion of magnesium alloy FSW joints, and to summarize the protection technology of welded joints.

Design/methodology/approach

The corrosion of magnesium alloy FSW joints includes electrochemical corrosion and stress corrosion. This paper summarizes corrosion protection techniques for magnesium alloys FSW joints, focusing on composition, microstructure changes and surface treatment methods.

Findings

Currently, this research is mainly focused on enhancing the corrosion resistance of magnesium alloy FSW joints by changing compositions, structural modifications and surface coating technologies. Refinement of the grains can be achieved by adjusting welding process parameters, which in turn minimizes the effects of the second phase on the alloy’s corrosion resistance.

Originality/value

This paper presents a comprehensive review on the corrosion and protection of magnesium alloys FSW joints, covering the latest research advancements and practical applications. It aims to equip researchers with a better insight into the field and inspire new studies on this topic.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 May 2023

Amit Rana, Sandeep Deshwal, Rajesh and Naveen Hooda

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these…

Abstract

Purpose

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these parameters is uttermost requirement and aim of this study to increase the suitability of FSW in different manufacturing industries. Hence, the input parameters are optimized through different soft computing methods to increase the considered objective in this study.

Design/methodology/approach

In this research, ultimate tensile strength (UTS), yield strength (YS) and elongation (EL) of FSW prepared butt joints of AA6061 and AA5083 Aluminium alloys materials are investigated as per American Society for Testing and Materials (ASTM E8-M04) standard. The FSW joints were prepared by changing the three input process parameters. To develop experimental run order design matrix, rotatable central composite design strategy was used. Furthermore, genetic algorithm (GA) in combination (Hybrid) with response surface methodology (RSM), artificial neural network (ANN), i.e. RSM-GA, ANN-GA, is exercised to optimize the considered process parameters.

Findings

The maximum value of UTS, YS and EL of test specimens on universal testing machine was measured as 264 MPa, 204 MPa and 14.41%, respectively. The most optimized results (UTS = 269.544 MPa, YS = 211.121 MPa and EL = 17.127%) are obtained with ANN-GA for the considered objectives.

Originality/value

The optimization of input parameters to increase the output objective values using hybrid soft computing techniques is unique in this research paper. The outcomes of this study will help the FSW using manufacturing industries to choose the best optimized parameters set for FSW prepared butt joint with improved mechanical properties.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 October 2015

M. Grujicic, R Yavari, S. Ramaswami, J Snipes and R Galgalikar

Friction stir welding (FSW) butt-joining involving the use of a dissimilar filler metal insert between the retreating and advancing portions of the workpiece is investigated…

Abstract

Purpose

Friction stir welding (FSW) butt-joining involving the use of a dissimilar filler metal insert between the retreating and advancing portions of the workpiece is investigated computationally using a combined Eulerian-Lagrangian (CEL) finite element analysis (FEA). The emphasis of the computational analysis was placed on the understanding of the inter-material mixing and weld-flaw formation during a dissimilar-material FSW process. The paper aims to discuss these issues.

Design/methodology/approach

The FEA employed is of a two-way thermo-mechanical character (i.e. frictional-sliding/plastic-work dissipation was taken to act as a heat source in the energy conservation equation), while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. Within the analysis, the workpiece and the filler-metal insert are treated as different materials within the Eulerian subdomain, while the tool was treated as a conventional Lagrangian subdomain. The use of the CEL formulation within the workpiece insert helped avoid numerical difficulties associated with excessive Lagrangian element distortion.

Findings

The results obtained revealed that, in order to obtain flaw-free FSW joints with properly mixed filler and base materials, process parameters including the location of the tool relative to the centerline of the weld must be selected judiciously.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to simulate FSW of dissimilar materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 January 2010

Antoine Bres, Bruno Monsarrat, Laurent Dubourg, Lionel Birglen, Claude Perron, Mohammad Jahazi and Luc Baron

The purpose of this paper is to establish a model‐based framework allowing the simulation, analysis and optimization of friction stir welding (FSW) processes of metallic…

1434

Abstract

Purpose

The purpose of this paper is to establish a model‐based framework allowing the simulation, analysis and optimization of friction stir welding (FSW) processes of metallic structures using industrial robots, with a particular emphasis on the assembly of aircraft components made of aerospace aluminum alloys.

Design/methodology/approach

After a first part of the work dedicated to the kinetostatic and dynamical identification of the robotic mechanical system, a complete analytical model of the robotized process is developed, incorporating a dynamic model of the industrial robot, a multi‐axes macroscopic visco‐elastic model of the FSW process and a force/position control unit of the system. These different modules are subsequently implemented in a high‐fidelity multi‐rate dynamical simulation.

Findings

The developed simulation infrastructure allowed the research team to analyze and understand the dynamic interaction between the industrial robot, the control architecture and the manufacturing process involving heavy load cases in different process configurations. Several critical process‐induced perturbations such as tool oscillations and lateral/rotational deviations are observed, analyzed, and quantified during the simulated operations.

Practical implications

The presented simulation platform will constitute one of the key technology enablers in the major research initiative carried out by NRC Aerospace in their endeavor to develop a robust robotic FSW platform, allowing both the development of optimal workcell layouts/process parameters and the validation of advanced real‐time control laws for robust handling of critical process‐induced perturbations. These deliverables will be incorporated in the resulting robotic FSW technology packaged for deployment in production environments.

Originality/value

The paper establishes the first model‐based framework allowing the high‐fidelity simulation, analysis and optimization of FSW processes using serial industrial robots.

Details

Industrial Robot: An International Journal, vol. 37 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 July 2021

Arun M., Muthukumaran M. and Balasubramanian S.

Dissimilar materials found applications in the structural fields to withstand the different types of loads and provide multi-facet properties to the final structure. Aluminum…

Abstract

Purpose

Dissimilar materials found applications in the structural fields to withstand the different types of loads and provide multi-facet properties to the final structure. Aluminum alloy materials are mostly used in aerospace and marine industries to provide better strength and safeguard the material from severe environmental conditions. The purpose of this study is to develop new material with superior strength to challenge the severe environmental conditions.

Design/methodology/approach

In the present investigation, friction stir welding (FSW) dissimilar joints were prepared from AA6061 and AA5083 aluminum alloys, and the weld nugget (WN) was reinforced with hard reinforcement particles such as La2O3 and CeO2. The tribological and mechanical properties of the prepared materials were tested to analyze the suitability of material in the aerospace and marine environmental conditions.

Findings

The results showed that the AA6061–AA5083/La2O3 material exhibited better mechanical and tribological characteristics. The FSW dissimilar AA6061–AA5083/La2O3 material exhibited lower wear rate of 7.37 × 10−3 mm3/m and minimum friction coefficient of 0.31 compared to all other materials owing to the reinforcing effect of La2O3 particles and the fine grains formed by FSW process at WN region. Further, FSW dissimilar AA6061–AA5083/La2O3 material displayed a maximum tensile strength and hardness of 378 MPa and 118 HV, respectively, among all the other materials tested.

Originality/value

This work is original and novel in the field of materials science engineering focusing on tribological characteristics of friction stir welded dissimilar aluminum alloys by the reinforcing effect of hard particles such as La2O3 and CeO2.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 October 2012

Jeroen De Backer, Anna‐Karin Christiansson, Jens Oqueka and Gunnar Bolmsjö

Friction stir welding (FSW) is a novel method for joining materials without using consumables and without melting the materials. The purpose of this paper is to present the state…

Abstract

Purpose

Friction stir welding (FSW) is a novel method for joining materials without using consumables and without melting the materials. The purpose of this paper is to present the state of the art in robotic FSW and outline important steps for its implementation in industry and specifically the automotive industry.

Design/methodology/approach

This study focuses on the robot deflections during FSW, by relating process forces to the deviations from the programmed robot path and to the strength of the obtained joint. A robot adapted for the FSW process has been used in the experimental study. Two sensor‐based methods are implemented to determine path deviations during test runs and the resulting welds were examined with respect to tensile strength and path deviation.

Findings

It can be concluded that deflections must be compensated for in high strengths alloys. Several strategies can be applied including online sensing or compensation of the deflection in the robot program. The welding process was proven to be insensitive for small deviations and the presented path compensation methods are sufficient to obtain a strong and defect‐free welding joint.

Originality/value

This paper demonstrates the effect of FSW process forces on the robot, which is not found in literature. This is expected to contribute to the use of robots for FSW. The experiments were performed in a demonstrator facility which clearly showed the possibility of applying robotic FSW as a flexible industrial manufacturing process.

Details

Industrial Robot: An International Journal, vol. 39 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 October 2007

Ergüven Vatandas

This paper seeks to outline a forward swept wing (FSW) design problem to reduce the optimization time and cost and to compare it with previous backward swept wing (BSW) results to…

Abstract

Purpose

This paper seeks to outline a forward swept wing (FSW) design problem to reduce the optimization time and cost and to compare it with previous backward swept wing (BSW) results to see the differences.

Design/methodology/approach

Dynamic mesh technique was used in the design of a transonic FSW by coupling it with heuristic algorithms. To obtain the initial FSW mesh from BSW domain, a modified dynamic mesh method was developed. It was also compared with experimental results.

Findings

It is observed that the drag coefficient can be reduced by 15 percent in 500 calculations while the lift coefficient is tried to be close to the design value determined at the beginning as a design constraint. Especially, the taper ratio change direction differs from previous BSW optimization.

Originality/value

It is the first time that the dynamic mesh technique is used for obtaining the mesh structures of the new FSW members through genetic optimization. A modified dynamic mesh was used to convert BSW domain to FSW, which means a huge movement for the cells. A physical model of initial FSW is also produced for wind tunnel and tested.

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 13 June 2016

Mica Grujicic, Jennifer Snipes, S Ramaswami and Chian-Fong Yen

The weld region obtained during friction stir welding (FSW) of metallic materials (including aluminum alloys) contains typically well-defined zones, each characterized by fairly…

218

Abstract

Purpose

The weld region obtained during friction stir welding (FSW) of metallic materials (including aluminum alloys) contains typically well-defined zones, each characterized by fairly unique microstructure and properties. The purpose of this paper is to carry out combined experimental and numerical investigations of the mechanical properties of materials residing in different weld zones of FSW joints of thick AA2139-T8 plates.

Design/methodology/approach

Within the experimental investigation, the following has been conducted: first, optical-microscopy characterization of the transverse sections of the FSW joints, in order to help identify and delineate weld zones; second, micro hardness field generation over the same transverse section in order to reconfirm the location and the extent of various weld zones; third, extraction of miniature tensile specimens from different weld zones and their experimental testing; and finally, extraction of a larger size tensile specimen spanning transversely the FSW weld and its testing. Within the computational investigation, an effort was made to: first, validate the mechanical properties obtained using the miniature tensile specimens; and second, demonstrate the need for the use of the miniature tensile specimens.

Findings

It is argued that the availability of weld-zone material mechanical properties is critical since: first, these properties are often inferior relative to their base-metal counterparts; second, the width of the weld in thick metallic-armor is often comparable to the armor thickness, and therefore may represent a significant portion of the armor exposed-surface area; and finally, modeling of the weld-material structural response under loading requires the availability of high-fidelity/validated material constitutive models, and the development of such models requires knowledge of the weld-material mechanical properties.

Originality/value

The importance of determining the mechanical properties of the material in different parts of the weld zone with sufficient accuracy is demonstrated.

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 October 2019

Rahul S.G. and Sharmila A.

The purpose of this study is to present a comprehensive review of the fundamental concepts and terminologies pertaining to different types of aluminium metal matrix composites…

Abstract

Purpose

The purpose of this study is to present a comprehensive review of the fundamental concepts and terminologies pertaining to different types of aluminium metal matrix composites, their joining techniques and challenges, friction stir welding (FSW) process, post-welding characterizations and basic control theory of FSW, followed by the discussions on the research reports in these areas.

Design/methodology/approach

Joining of aluminium metal matrix composites (Al-MMC) poses many challenges. These materials have their demanding applications in versatile domains, and hence it is essential to understand their weldability and material characteristics. FSW is a feasible choice for joining of Al-MMC over the fusion welding because of the formation of narrow heat affected zone and minimizing the formation of intermetallic compounds at weld interface. The goal in FSW is to generate enough thermal energy by friction between the workpiece and rotating tool. Heat energy is generated by mechanical interaction because of the difference in velocity between the workpiece and rotating tool. In the present work, a detailed survey is done on the above topics and an organised conceptual context is presented. A complete discussion on significance of FSW process parameters, control schemes, parameter optimization and weld quality monitoring are presented, along with the analysis on relation between the interdependent parameters.

Findings

Results from the study present the research gaps in the FSW studies for joining of the aluminium-based metal matrix composites, and they highlight further scope of studies pertaining to this domain.

Originality/value

It is observed that the survey done on FSW of Al-MMCs and their control theory give an insight into the fundamental concepts pertaining to this research area to enhance interdisciplinary technology exploration.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 October 2016

Ruolong Qi, Weijia Zhou, Huijie Zhang, Wei Zhang and Guangxin Yang

The weld joint of large thin-wall metal parts which deforms in manufacturing and clamping processes is very difficult to manufacture for its shape is different from the initial…

Abstract

Purpose

The weld joint of large thin-wall metal parts which deforms in manufacturing and clamping processes is very difficult to manufacture for its shape is different from the initial model; thus, the space normals of the part surface are uncertain.

Design/methodology/approach

In this paper, an effective method is presented to calculate cutter location points and to estimate the space normals by measuring some sparse discrete points of weld joint. First, a contact-type probe fixed in the end of friction stir welding (FSW) robot is used to measure a series of discrete points on the weld joint. Then, a space curve can be got by fitting the series of points with a quintic spline. Second, a least square plane (LSP) of the measured points is obtained by the least square method. Then, normal vectors of the plane curve, which is the projection of the space curve on the LSP, are used to estimate the space normals of the weld joint curve. After path planning, a post-processing method combing with FSW craft is elaborated.

Findings

Simulation and real experiment demonstrate that the proposed strategy, which obtains cutter locations of welding and normals without measuring the entire surface, is feasible and effective for the FSW of large thin-walled complex surface parts.

Originality/value

This paper presents a novel method which makes it possible to accurately weld the large thin-wall complex surface part by the FSW robot. The proposed method might be applied to any multi-axes FSW robot similar to the robot studied in this paper.

Details

Industrial Robot: An International Journal, vol. 43 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 264