Search results

1 – 10 of over 9000
Article
Publication date: 1 April 1992

JAROSLAV MACKERLE

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…

Abstract

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.

Details

Engineering Computations, vol. 9 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 November 2019

Beatriz Fernández-Olit, José María Martín Martín and Eva Porras González

The purpose of this paper is to provide a systematic literature review of the research published on financial inclusion (FI) and financial exclusion (FE) in developed countries…

2739

Abstract

Purpose

The purpose of this paper is to provide a systematic literature review of the research published on financial inclusion (FI) and financial exclusion (FE) in developed countries using key terms and strict inclusion and exclusion criteria.

Design/methodology/approach

In total, 52 papers were deemed to be relevant to the analysis. These works were critiqued using a framework that addressed geographical contexts, topics, methodologies and theoretical frameworks.

Findings

This review highlights the uneven level of development of the academic debate between North America, the UK and continental Europe, and identifies the different theoretical frameworks that construe the body of literature in each region. In addition, the findings show the scant offer of work on the impact that the digital economy has on FE, as well as the reduced number of studies which have focused on certain vulnerable groups and the access to some financial services.

Social implications

The studies reviewed have not analyzed the specific needs of vulnerable groups while considering the different contexts and pathways to exclusion. The evaluation of solutions and strategies to achieve inclusion is one of the least addressed aspects in the literature.

Originality/value

The paper synthesizes the main contributions of the top literature on the redefinition of FI/FE in developed countries, the role of fringe services and new determinants of exclusion. The proliferation of studies regarding FI in low- and middle-income countries has generated a great amount of meta-analysis and systematized reviews of asymmetric results. However, no systematized literature review on the broad scope of FI/FE in developed countries has been published in the last decade. This work sheds light over poorly analyzed areas of research that refer to notable social problems.

Details

International Journal of Bank Marketing, vol. 38 no. 3
Type: Research Article
ISSN: 0265-2323

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1443

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 June 2017

Xiang Yu, Degao Zou, Xianjing Kong and Long Yu

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This…

Abstract

Purpose

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This issue has been often studied using the small-strain finite element (FE) method in previous research. This paper aims to research the interaction behaviour between a concrete cut-off wall and high-plasticity clay using large-deformation FE analyses.

Design/methodology/approach

The re-meshing and interpolation technique with a small-strain (RITSS) method was performed using an independently developed program and adopted for large-deformation FE analyses, and a suitable element size for the high-plasticity clay region was suggested. The layered construction process of an earth core dam built on thick alluviums was simulated using the RITSS method incorporating a hyperbolic model for soil.

Findings

The RITSS method is an effective technique for simulating the soil–structure interaction during dam construction. The RITSS analysis predicted a higher maximum principle stress of the concrete cut-off wall and higher stress levels in the high-plasticity clay region than small-strain FE analysis.

Originality/value

A practical method for large-deformation FE analysis was advised and was used for the first time to study the interaction between a concrete cut-off wall and high-plasticity clay in dam engineering. Large deformation in the high-plasticity clay was handled using the RITSS method. Moreover, the penetration process of the concrete cut-off wall into the high-plasticity clay was captured using a favourable element shape and mesh density.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 August 2016

Miguel Abambres and Mário Rui Arruda

Since the use of advanced finite element analysis (FEA) in the design of steel structures has been increasing its popularity in order to avoid unsafe or highly conservative…

Abstract

Purpose

Since the use of advanced finite element analysis (FEA) in the design of steel structures has been increasing its popularity in order to avoid unsafe or highly conservative designs, a solid know-how in computer-aided design (CAD) and engineering (CAE) codes is necessary. Therefore the purpose of this paper is to provide an extensive review of useful guidelines concerning modelling, simulation and result validation for the accurate performance of those analyses.

Design/methodology/approach

Such guidelines are obtained from international steel design codes like Eurocode 3 and DNV, publications from experienced CAE engineers and renowned FE software companies like Ansys and Altair. Topics like mesh independence, the effect of the load sequence on the load bearing capacity and steel fracture criteria are underlined.

Findings

Since the use of advanced FEA in the design of steel structures is becoming more and more traditional due to the increase of its competitiveness when compared to the use of (very) conservative design rules, a solid know-how in CAD and CAE codes is necessary.

Practical implications

This work will be quite useful for structural steel stress engineers, contributing for a safer use of FEA in research and design.

Originality/value

This work will be quite useful for structural steel stress engineers, contributing for a safer use of FEA in research and design.

Details

International Journal of Structural Integrity, vol. 7 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 February 1989

C.T. Karlsson

Single‐pass girth butt welding of a carbon‐manganese pipe is studied numerically using the finite element codes ADINAT/ADINA. A rotationally symmetric finite element model is…

Abstract

Single‐pass girth butt welding of a carbon‐manganese pipe is studied numerically using the finite element codes ADINAT/ADINA. A rotationally symmetric finite element model is employed in both the thermal and mechanical analysis. This model is used to investigate the influence on the residual stress state of pipe geometry, mesh density and material modelling. The results from the present study are compared with previous results from two different FE analyses and an experimental investigation. One of the FE analyses was fully three dimensional and the other employed shell elements. The calculated residual stresses were found to differ significantly only when different material models were employed. The thermal strain seemed to be the material parameter with the largest influence on the residual stress state. Especially the changes in thermal strain during phase transformations seemed to have a great influence. This means that the temperature field should be determined accurately enough to predict when and where the different phase transformations occur. Almost the same residual stresses were obtained for two pipes with different pipe geometries and weld parameters.

Details

Engineering Computations, vol. 6 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 30 April 2020

Kaifeng Jiang, Si Yuan and Qinyan Xing

This paper aims to propose a new adaptive strategy for two-dimensional (2D) nonlinear finite element (FE) analysis of the minimal surface problem (MSP) based on the element energy…

Abstract

Purpose

This paper aims to propose a new adaptive strategy for two-dimensional (2D) nonlinear finite element (FE) analysis of the minimal surface problem (MSP) based on the element energy projection (EEP) technique.

Design/methodology/approach

By linearizing nonlinear problems into a series of linear problems via the Newton method, the EEP technique, which is an effective and reliable point-wise super-convergent displacement recovery strategy for linear FE analysis, can be directly incorporated into the solution procedure. Accordingly, a posteriori error estimate in maximum norm was established and an adaptive 2D nonlinear FE strategy of h-version mesh refinement was developed.

Findings

Three classical known surfaces, including a singularity problem, were analysed. Moreover, an example whose analytic solution is unavailable was considered and a comparison was made between present results and those computed by the MATLAB PDE toolbox. The results show that the adaptively-generated meshes reflect the difficulties inherent in the problems and the proposed adaptive analysis can produce FE solutions satisfying the user-preset error tolerance in maximum norm with a fair adaptive convergence rate.

Originality/value

The EEP technique for linear FE analysis was extended to the nonlinear procedure of MSP and can be expected to apply to other 2D nonlinear problems. The employment of the maximum norm makes point-wisely error control on the sought surfaces possible and makes the proposed method distinguished from other adaptive FE analyses.

Article
Publication date: 18 June 2019

Yiyi Dong, Si Yuan and Qinyan Xing

This study aims to propose a general and efficient adaptive strategy with local mesh refinement for two-dimensional (2D) finite element (FE) analysis based on the element energy…

Abstract

Purpose

This study aims to propose a general and efficient adaptive strategy with local mesh refinement for two-dimensional (2D) finite element (FE) analysis based on the element energy projection (EEP) technique.

Design/methodology/approach

In view of the inflexibility of the existing global dimension-by-dimension (D-by-D) recovery method via EEP technique, in which displacements are recovered through element strips, an improved element D-by-D recovery strategy was proposed, which enables the EEP recovery of super-convergent displacements to be implemented mostly on a single element. Accordingly, a posteriori error estimate in maximum norm was established and an EEP-based adaptive FE strategy of h-version with local mesh refinement was developed.

Findings

Representative numerical examples, including stress concentration and singularity problems, were analyzed; the results of which show that the adaptively generated meshes reasonably reflect the local difficulties inherent in the physical problems and the proposed adaptive analysis can produce FE displacement solutions satisfying the user-specified tolerances in maximum norm with an almost optimal adaptive convergence rate.

Originality/value

The proposed element D-by-D recovery method is a more efficient and flexible displacement recovery method, which is implemented mostly on a single element. The EEP-based adaptive FE analysis can produce displacement solutions satisfying the specified tolerances in maximum norm with an almost optimal convergence rate and thus can be expected to apply to other 2D problems.

Article
Publication date: 3 April 2018

Mohammad Gharaibeh

One difficultly in building an effective finite element (FE) model of a board-level package is because of complex structure of the printed circuit board (PCB), as it contains…

Abstract

Purpose

One difficultly in building an effective finite element (FE) model of a board-level package is because of complex structure of the printed circuit board (PCB), as it contains copper layers, woven fabrics, plated-through holes and so forth. Therefore, it is often acceptable to obtain equivalent orthotropic material properties and use them in the simulation. This paper aims to provide a research methodology to produce equivalent FE models for board-level electronic packages.

Design/methodology/approach

In this methodology, the FE models’ data were correlated with experimental modal analysis results in terms of natural frequencies and mode shapes. Statistical factorial analysis was used to examine the electronic assembly material properties effect on the structure’s resonant frequencies. The equivalent material properties of the PCB were adjusted using the optimization tool available in ANSYS software for free boundary conditions. The equivalent FE model was then validated for the fixed boundary conditions.

Findings

The resultant FE models were in great match with the measured data in terms of resonant frequencies and mode shapes. The so-developed models can be further used in the analysis of the dynamic response of the electronic packages and solder interconnects.

Originality/value

The current approach provides a sophisticated research methodology to provide high-accuracy FE models of electronic assemblies subjected to vibration. The main value of this approach is to first test the effect of each material property on the package dynamic characteristics before starting the correlation process, then to automate the correlation algorithm using the built-in FE model updating feature available in ANSYS software.

Details

Microelectronics International, vol. 35 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 12 September 2016

Nicola Tondini, Andrea Morbioli, Olivier Vassart, Sullivan Lechêne and Jean-Marc Franssen

This paper aims to present the assumptions and the issues that arise when developing an integrated modelling methodology between a computational fluid dynamics (CFD) software…

Abstract

Purpose

This paper aims to present the assumptions and the issues that arise when developing an integrated modelling methodology between a computational fluid dynamics (CFD) software applied to compartment fires and a finite element (FE) software applied to structural systems.

Design/methodology/approach

Particular emphasis is given to the weak coupling approach developed between the CFD code fire dynamics simulator (FDS) and the FE software SAFIR. Then, to show the potential benefits of such a methodology, a multi-storey steel-concrete composite open car park was considered.

Findings

Results show that the FDS–SAFIR coupling allows overcoming shortcomings of simplified models by performing the thermal analysis in the structural elements based on a more advanced modelling of the fire development, whereas it appears that the Hasemi model is more conservative in terms of thermal action.

Originality/value

A typical design approach using the Hasemi model is compared with a more advanced analysis that relies on the proposed FDS–SAFIR coupling.

Details

Journal of Structural Fire Engineering, vol. 7 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 9000