Search results

1 – 10 of 16
Article
Publication date: 3 October 2016

Gholamreza Kefayati

The thermal-diffusion (Soret) and the diffusion-thermo (Dufour) effects play a crucial role in double diffusive mixed convection in a lid-driven cavity; but they have not been…

Abstract

Purpose

The thermal-diffusion (Soret) and the diffusion-thermo (Dufour) effects play a crucial role in double diffusive mixed convection in a lid-driven cavity; but they have not been studied properly by researchers. The purpose of this paper is to investigate effects of Soret and Dufour parameters on double diffusive laminar mixed convection of shear-thinning and Newtonian fluids in a two-sided lid-driven cavity.

Design/methodology/approach

Finite Difference Lattice Boltzmann method (FDLBM) has been applied to solve the complex problem. This study has been conducted for the certain pertinent parameters of Richardson number (Ri=0.00062-1), power-law index (n=0.2-1), Soret parameter (Sr=−5-5) as Dufour number effects have been investigated from Dr=−5 to 5 at Buoyancy ratio of N=1 and Lewis number of Le=5.

Findings

Results indicate that the augmentation of Richardson number causes heat and mass transfer to decrease. The fall of the power-law index declines heat and mass transfer at Ri=0.00062 and 0.01 in various Dufour and Soret parameters. At Ri=1, the heat and mass transfer rise with the increment of power-law index for Dr=0 and Sr=0. The least effect of power-law index on heat and mass transfer among the studied Richardson numbers was observed at Ri=1. The positive Dufour numbers augment the heat transfer gradually as the positive Soret numbers enhance the mass transfer. The Dr=−5 and Sr=−5 provokes the negative average Nusselt and Sherwood numbers, respectively, to be generated. The least magnitude of the average Nusselt and Sherwood numbers were obtained at Dr=−1 and Sr=−1, respectively.

Originality/value

Soret and Dufour effects in double diffusive mixed convection has not been studied in a lid-driven cavity. In addition. this study has been conducted also for shear-thinning fluids.

Details

Engineering Computations, vol. 33 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 October 2023

Aoxiang Qiu, Weimin Sang, Feng Zhou and Dong Li

The paper aims to expand the scope of application of the lattice Boltzmann method (LBM), especially in the field of aircraft engineering. The traditional LBM is usually applied…

Abstract

Purpose

The paper aims to expand the scope of application of the lattice Boltzmann method (LBM), especially in the field of aircraft engineering. The traditional LBM is usually applied to incompressible flows at a low Reynolds number, which is not sufficient to satisfy the needs of aircraft engineering. Devoted to tackling the defect, the paper proposes a developed LBM combining the subgrid model and the multiple relaxation time (MRT) approach. A multilayer adaptive Cartesian grid method to improve the computing efficiency of the traditional LBM is also employed.

Design/methodology/approach

The subgrid model and the multilayer adaptive Cartesian grid are introduced into MRT-LBM for simulations of incompressible flows at a high Reynolds number. Validated by several typical flow simulations, the numerical methods in this paper can efficiently study the flows under high Reynolds numbers.

Findings

Some numerical simulations for the lid-driven flow of cavity, flow around iced GLC305, LB606b and ONERA-M6 are completed. The paper presents the investigation results, indicating that the methods are accurate and effective for the separated flow after icing.

Originality/value

LBM is developed with the addition of the subgrid model and the MRT method. A numerical strategy is proposed using a multilayer adaptive Cartesian grid method and its treatment of boundary conditions. The paper refers to innovative algorithm developments and applications to the aircraft engineering, especially for iced wing simulations with flow separations.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 February 2021

Surabhi Nishad, Sapna Jain and Rama Bhargava

This paper aims to study the flow and heat transfer inside a wavy enclosure filled with Cu-water nanofluid under magnetic field effect by parallel implemented meshfree approach.

Abstract

Purpose

This paper aims to study the flow and heat transfer inside a wavy enclosure filled with Cu-water nanofluid under magnetic field effect by parallel implemented meshfree approach.

Design/methodology/approach

The simulation has been carried out for a two-dimensional model with steady, laminar and incompressible flow of the nanofluid filled inside wavy enclosure in which one of the walls is sinusoidal such that the amplitude (A = 0.15) and number of undulations (n = 2) are fixed. A uniform magnetic field B0 has been applied at an inclination angle γ. The governing equations for the transport phenomena have been solved numerically by implementing element-free Galerkin method (EFGM) with the sequential as well as parallel approach. The effect of various parameters, namely, nanoparticle volume fraction (φ), Rayleigh number (Ra), Hartmann number (Ha) and magnetic field inclination angle (γ) has been studied on the natural convection flow of nanofluid.

Findings

The results are obtained in terms of average Nusselt number calculated at the cold wavy wall, streamlines and isotherms. It has been observed that the increasing value of Rayleigh number results in increased heat transfer rate while the Hartmann number retards the fluid motion. On the other hand, the magnetic field inclination angle gives rise to the heat transfer rate up to its critical value. Above this value, the heat transfer rate starts to decrease.

Originality/value

The implementation of the magnetic field and its inclination has provided very interesting results on heat and fluid flow which can be used in the drug delivery where nanofluids are used in many physiological problems. Another important novelty of the paper is that meshfree method (EFGM) has been used here because the domain is irregular. The results have been found to be very satisfactory. In addition, parallelization of the scheme (which has not been implemented earlier in such problems) improves the computational efficiency.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 May 2019

Majid Siavashi and Shirzad Iranmehr

The purpose of this study is to analyze a new idea for external flow over a cylinder to increase the heat transfer and reduce pressure drop. Using wedge-shaped porous media in the…

Abstract

Purpose

The purpose of this study is to analyze a new idea for external flow over a cylinder to increase the heat transfer and reduce pressure drop. Using wedge-shaped porous media in the front and wake regions of the cylinder can improve its hydrodynamic, and the rotating flow in the wake region can enhance the heat transfer with increased porous–liquid contact. Permeability plays a vital role, as a high-permeable medium improves heat transfer, whereas a low-permeable region improves the hydrodynamic.

Design/methodology/approach

Therefore, in the current research, external forced convection of nanofluid laminar flow over a bundle of cylinders is simulated using a two-phase mixture model. Four cases with different porous blocks around the cylinder are assessed: rectangular porous; wedge shape in trailing edge (TEP); wedge shape in leading and trailing edges (LTEP); and no porous block case. Also, three different lengths of wedge-shaped regions are considered for TEP and LTEP cases.

Findings

Results are presented in terms of Nusselt (Nu), Euler (Eu) and the performance evaluation criterion (PEC) numbers for various Reynolds (Re) and Darcy (Da) numbers.

Originality/value

It was found that in most situations, LTEP case provides the highest Nu and PEC values. Also, optimal Re and porous medium length exist to maximize PEC, depending on the values of Da and nanofluid volume fraction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2023

Kashif Irshad, Amjad Ali Pasha, Mohammed K. Al Mesfer, Mohd Danish, Manoj Kumar Nayak, Ali Chamkha and Ahmed M. Galal

The entropy and thermal behavior analyses of non-Newtonian nanofluid double-diffusive natural convection inside complex domains may captivate a bunch of scholars’ attention…

Abstract

Purpose

The entropy and thermal behavior analyses of non-Newtonian nanofluid double-diffusive natural convection inside complex domains may captivate a bunch of scholars’ attention because of the potential utilizations that they possess in modern industries, for example, heat exchangers, solar energy collectors and cooling of electronic apparatuses. This study aims to investigate the second law and thermal behavior of non-Newtonian double-diffusive natural convection (DDNC) of Al2O3-H2O nanofluid within a C-shaped cavity emplacing two hot baffles and impacted by a magnetic field.

Design/methodology/approach

For the governing equations of the complicated and practical system with all considered parameters to be solved via a formidable numerical approach, the finite element method acts as an approach to achieving the desired solution. This method allows us to gain a detailed solution to the studied geometry.

Findings

This investigation has been executed for the considered parameters of range, such as power-law index, baffle length, Lewis number, buoyancy ratio, Hartmann number and Rayleigh number. The main results reveal that isothermal and concentration lines are significantly more distorted, indicating intensified concentration and temperature distributions because of the growth of baffle length (L). Nuave decreases by 8.4% and 0.8% while it enhances by 49.86% and 33.87%, respectively, because of growth in the L from 0.1 to 0.2 and 0.2 to 0.3.

Originality/value

Such a comprehensive study on the second law and thermal behavior of DDNC of Al2O3-H2O nanofluid within a C-shaped cavity emplacing two hot baffles and impacted by magnetic field has not yet been carried out.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 November 2020

Abdelraheem M. Aly and Ehab Mahmoud Mohamed

The purpose of this study is to use an incompressible smoothed particle hydrodynamics (ISPH) method for simulating buoyancy ratio and magnetic field effects on double diffusive…

Abstract

Purpose

The purpose of this study is to use an incompressible smoothed particle hydrodynamics (ISPH) method for simulating buoyancy ratio and magnetic field effects on double diffusive natural convection of a cooper-water nanofluid in a cavity. An open pipe is embedded inside the center of a cavity, and it is occupied by solid particles.

Design/methodology/approach

The dimensionless governing equations in Lagrangian form were solved by ISPH method. Two different thermal conditions were considered for the solid particles. The actions of the solid particles were tracked inside a cavity. The effects of Hartman parameter, Rayleigh number, nanoparticles volume fraction and Lewis number on features of heat and mass transfer and flow field were tested.

Findings

The results showed that the buoyancy ratio changes the directions of the solid particles diffusion in a cavity. The hot solid particles were raised upwards at aiding mode (N > 0) and downwards at an opposing mode (N < 0). A comparison is made with experimental and numerical simulation results, and it showed a well agreement.

Originality/value

Novel studies for the impacts of buoyancy ratio on the diffusion of solid particles embedded in an open pipe during double-diffusive flow were conducted.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2018

Ismail Arroub, Ahmed Bahlaoui, Abdelghani Raji, Mohammed Hasnaoui and Mohamed Naïmi

The purpose of this paper is to investigate numerically mixed convection of Al2O3-water nanofluids flowing through a horizontal ventilated cavity heated from below by a…

Abstract

Purpose

The purpose of this paper is to investigate numerically mixed convection of Al2O3-water nanofluids flowing through a horizontal ventilated cavity heated from below by a temperature varying sinusoidally along its lower wall. The simulations focus on the effects of different key parameters, such as Reynolds number (200 ≤ Re ≤ 5,000), nanoparticles’ concentration (0 ≤ ϕ ≤ 0.1) and phase shift of the heating temperature (0 ≤ γ ≤ π), on flow and thermal patterns and heat transfer performances.

Design/methodology/approach

The Navier–Stokes equations describing the nanofluid flow were discretized using a finite difference technique. The vorticity and energy equations were solved by the alternating direction implicit method. Values of the stream function were obtained by using the point successive over-relaxation method.

Findings

The simulations were performed for two modes of imposed external flow (injection and suction). The main findings are that the dynamical and thermal fields are affected by the parameters Re, ϕ, γ and the applied ventilation mode; the addition of nanoparticles leads to an improvement of heat transfer rate and an increase of mean temperature inside the enclosure; the heat exchange performance and the better cooling are more pronounced in suction mode; the phase shift of the heating temperature may lead to periodic solutions for weaker values of Re and contributes to an increase or a decrease of heat transfer depending on the value of ϕ and the convection regime.

Originality/value

To the best of the authors’ knowledge, the problem of mixed convection of a nanofluid inside a vented cavity using the injection or suction technics and submitted to non-uniform heating conditions has not been treated so far.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 December 2018

Ammar I. Alsabery, Taher Armaghani, Ali J. Chamkha, Muhammad Adil Sadiq and Ishak Hashim

The aim of this study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The…

Abstract

Purpose

The aim of this study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The authors believe that this work is a good contribution for improving the thermal performance and the heat transfer enhancement in some engineering instruments.

Design/methodology/approach

The current work investigates the problem of mixed convection heat transfer in a double lid-driven square cavity in the presence of magnetic field. The used cavity is filled with water-Al2O3 nanofluid based on Buongiorno’s two-phase model. The bottom horizontal wall is maintained at a constant high temperature and moves to the left/right, while the top horizontal wall is maintained at a constant low temperature and moves to the right/left. The left and right vertical walls are thermally insulated. The dimensionless governing equations are solved numerically using the Galerkin weighted residual finite element method.

Findings

The obtained results show that the heat transfer rate enhances with an increment of Reynolds number or a reduction of Hartmann number. In addition, effects of thermophoresis and Brownian motion play a significant role in the growth of convection heat transfer.

Originality/value

According to above-mentioned studies and to the authors’ best knowledge, there has no study reported the MHD mixed convection heat transfer in a double lid-driven cavity using the two-phase nanofluid model. Thus, the authors of the present study believe that this work is valuable. Therefore, the aim of this comprehensive numerical study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The authors believe that this work is a good contribution for improving the thermal performance and the heat transfer enhancement in some engineering instruments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 July 2019

Elzbieta Fornalik-Wajs, Aleksandra Roszko, Janusz Donizak and Anna Kraszewska

Nanofluids’ properties made them interesting for various areas like engineering, medicine or cosmetology. Discussed here, research pertains to specific problem of heat transfer…

Abstract

Purpose

Nanofluids’ properties made them interesting for various areas like engineering, medicine or cosmetology. Discussed here, research pertains to specific problem of heat transfer enhancement with application of the magnetic field. The main idea was to transfer high heat rates with utilization of nanofluids including metallic non-ferrous particles. The expectation was based on changed nanofluid properties. However, the results of experimental analysis did not meet it. The heat transfer effect was smaller than in the case of base fluid. The only way to understand the process was to involve the computational fluid dynamics, which could help to clarify this issue. The purpose of this research is deep understanding of the external magnetic field effect on the nanofluids heat transfer.

Design/methodology/approach

In presented experimental and numerical studies, the water and silver nanofluids were considered. From the numerical point of view, three approaches to model the nanofluid in the strong magnetic field were used: single-phase Euler, Euler–Euler and Euler–Lagrange. In two-phase approach, the momentum transfer equations for individual phases were coupled through the interphase momentum transfer term expressing the volume force exerted by one phase on the second one.

Findings

Therefore, the results of numerical simulation predicted decrease of convection heat transfer for nanofluid with respect to pure water, which agreed with the experimental results. The experimental and numerical results are in good agreement with each other, which confirms the right choice of two-phase approach in analysis of nanofluid thermo-magnetic convection.

Originality/value

The Euler–Lagrange exhibit the best matching with the experimental results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2019

Zehba A.S. Raizah and Abdelraheem M. Aly

This paper aims to adopt incompressible smoothed particle hydrodynamics (ISPH) method for studying magnetohydrodynamic (MHD) double-diffusive natural convection from an inner open…

94

Abstract

Purpose

This paper aims to adopt incompressible smoothed particle hydrodynamics (ISPH) method for studying magnetohydrodynamic (MHD) double-diffusive natural convection from an inner open pipe in a cavity filled with a nanofluid.

Design/methodology/approach

The Lagrangian description of the governing equations was solved using the current ISPH method. The effects of two pipe shapes as a straight pipe and V-pipe, length of the pipe LPipe (0.2-0.8), length of V-pipe LV (0.04-0.32), Hartmann parameter Ha (40-120), solid volume fraction ϕ (0-0.1) and Lewis number Le (1-50) on the heat and mass transfer of nanofluid have been investigated.

Findings

The results demonstrate that the average Nusselt and Sherwood numbers are increased by increment on the straight-pipe length, V-pipe length, Hartmann parameter, solid volume fraction and Lewis number. In addition, the variation on the open pipe shapes gives a suitable choice for enhancement heat and mass transfer inside the cavity. The control parameters of the open pipes can enhance the heat and mass transfer inside a cavity. In addition, the variation on the open pipe shapes gives a suitable choice for enhancement heat and mass transfer inside the cavity.

Originality/value

ISPH method is developed to study the MHD double-diffusive natural convection from the novel shapes of the inner heated open pipes inside a cavity including straight-pipe and V-pipe shapes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 16