Search results

1 – 10 of 118
Article
Publication date: 29 December 2017

O.K. Koriko, I.L. Animasaun, M. Gnaneswara Reddy and N. Sandeep

The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm…

107

Abstract

Purpose

The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm alumina-water nanofluid within the thin boundary layer in the presence of quartic autocatalytic kind of chemical reaction effects, and to unravel the effects of a magnetic field parameter, random motion of the tiny nanoparticles and volume fraction on the flow.

Design/methodology/approach

The chemical reaction between homogeneous (Eyring-Powell 36 nm alumina-water) bulk fluid and heterogeneous (three molecules of the catalyst at the surface) in the flow of magnetohydrodynamic three-dimensional flow is modeled as a quartic autocatalytic kind of chemical reaction. The electromagnetic radiation which occurs within the boundary layer is treated as the nonlinear form due to the fact that Taylor series expansion may not give full details of such effects within the boundary layer. With the aid of appropriate similarity variables, the nonlinear coupled system of partial differential equation which models the flow was reduced to ordinary differential equation boundary value problem.

Findings

A favorable agreement of the present results is obtained by comparing it for a limiting case with the published results; hence, reliable results are presented. The concentration of homogeneous bulk fluid (Eyring-Powell nanofluid) increases and decreases with ϕ and Pr, respectively. The increase in the value of magnetic field parameter causes vertical and horizontal velocities of the flow within the boundary layer to decrease significantly. The decrease in the vertical and horizontal velocities of Eyring-Powell nanofluid flow within the boundary layer is guaranteed due to an increase in the value of M. Concentration of homogeneous fluid increases, while the concentration of the heterogeneous catalyst at the wall decreases with M.

Originality/value

Considering the industrial applications of thermal stratification in solar engineering and polymer processing where the behavior of the flow possesses attributes of Eyring-Powell 36 nm alumina-water, this paper presents the solution of the flow problem considering 36 nm alumina nanoparticles, thermophoresis, stratification of thermal energy, Brownian motion and nonlinear thermal radiation. In addition, the aim and objectives of this paper fill such vacuum in the industry.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 December 2022

M.M. Bhatti, Sadiq M. Sait, R. Ellahi, Mikhail A. Sheremet and Hakan Oztop

This study aims to deal with entropy generation and thermal analysis of magnetic hybrid nanofluid containing silver and gold as nanoparticles (Au-Ag/NPs) in the Eyring–Powell fluid

Abstract

Purpose

This study aims to deal with entropy generation and thermal analysis of magnetic hybrid nanofluid containing silver and gold as nanoparticles (Au-Ag/NPs) in the Eyring–Powell fluid.

Design/methodology/approach

The blood is used as a base fluid to study the rheological effects in a wavy asymmetric channel. The effect of viscous dissipation is also taken into account. The mathematical model is developed using the lubrication technique. The perturbation method is used to solve the nondimensional nonlinear differential equations, whereas the pumping properties have been analyzed using numerical integration.

Findings

The impact of entropy generation, Brinkman number, Hartmann number, nanoparticles volume fraction, thermal Grashof number, Brinkman number and Eyring–Powell fluid parameter is examined on the velocity profile, temperature profile and pumping characteristics. It is observed that the introduction of gold and silver nanoparticles boosts the velocity field in a smaller segment of the channel. The temperature profile rises for the increasing values of Hartmann number, Brinkman number and nanoparticle volume fractions while the temperature profile is restrained by the Eyring–Powell fluid parameter. The pumping rate rises in all sections as the thermal Grashof number and Hartmann number increase; however, the Eyring–Powell fluid parameter has the reverse effect. The volume of the trapping boluses is significantly affected by the Eyring–Powell fluid parameter, thermal Grashof number and fluid parameter.

Originality/value

The results are original and contribute to discover the role of hybrid nanoparticles under the influence of entropy generation viscous dissipation and magnetic fields. Pharmaceutical technology may use this research for things like better mucoadhesive drug delivery systems and more productive peristaltic micropumps.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 April 2019

S.S. Ghadikolaei, Kh. Hosseinzadeh and D.D. Ganji

The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal…

Abstract

Purpose

The purpose of this study is, mixed convection on magnetohydrodynamic (MHD) flow of Eyring–Powell nanofluid over a stretching cylindrical surface in the presence of thermal radiation, chemical reaction, heat generation and Joule heating effect is investigated and analyzed. The Brownian motion and thermophoresis phenomenon are used to model nanoparticles (Buongiorno’s model).

Design/methodology/approach

The numerical method is applied to solve the governing equations. Obtained results from the effects of different parameters changes on velocity, temperature and concentration profiles are reported as diagrams.

Findings

As a result, velocity profile has been reduced by increasing the Hartman number (magnetic field parameter) because of the existence of Lorentz force and increasing Eyring–Powell fluid parameter. In addition, the nanoparticle concentration profile has been reduced because of increase in chemical reaction parameter. At the end, the effects of different parameters on skin friction coefficient and local Nusselt number are investigated.

Originality/value

Eyring–Powell nanofluid and MHD have significant influence on flow profile.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 December 2022

Zehra Pinar Izgi

When the literature is reviewed carefully, the analytical solutions of these types of models are missing. First using appropriate similarity transformation, the equations are…

Abstract

Purpose

When the literature is reviewed carefully, the analytical solutions of these types of models are missing. First using appropriate similarity transformation, the equations are reduced to dimensionless form (NODE). To solve the reduced models, ansatz-based methods are considered. Finally, the explicit form solutions are obtained and the effects of material parameters and Prandtl number on the velocity and temperature profiles are shown in figures by the exact solutions. This study aims to discuss the aforementioned solution.

Design/methodology/approach

One of the non-Newtonian fluids is Eyring-Powell (EP) fluid which is derived from the kinetic theory of fluids. Two variations of EP model are considered to obtain the exact solutions that are missing in the literature. In order to obtain exact solutions, one of the ansatz-based methods is considered. The effects of material parameters and Prandtl number on the velocity and temperature profiles are shown in figures by the exact solutions. The results will guide to develop the model to predict the velocity profile and temperature profile when experimental data for dimensionless material parameters of EP fluid are available.

Findings

Finally, the explicit form solutions are obtained and the effects of material parameters and Prandtl number are shown in the figures. The results will guide to develop of the model to predict the velocity profile and temperature profile when experimental data for dimensionless material parameters of EP fluid are available. For the modified EP models, only special cases are considered. The generalized form, i.e. the modified EP models, which include deformation parameters, will be considered in the authors’ future work.

Originality/value

When the literature is reviewed carefully, the analytical solutions of these types of models are missing so by this work, the gap in the literature is filled. The explicit form solutions are obtained and the effects of material parameters and Prandtl number on the velocity and temperature profiles are shown in figures.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 August 2019

Hammed Abiodun Ogunseye, Sulyman Olakunle Salawu, Yusuf Olatunji Tijani, Mustapha Riliwan and Precious Sibanda

The purpose of this paper is to investigate the dynamical behavior of heat and mass transfer of non-Newtonian nanofluid flow through parallel horizontal sheet with heat-dependent…

70

Abstract

Purpose

The purpose of this paper is to investigate the dynamical behavior of heat and mass transfer of non-Newtonian nanofluid flow through parallel horizontal sheet with heat-dependent thermal conductivity and magnetic field. The effects of thermophoresis and Brownian motion on the Eyring‒Powell nanofluid heat and concentration are also considered. The flow fluid is propelled by squeezing force and constant pressure gradient. The hydromagnetic fluid is induced by periodic time variations.

Design/methodology/approach

The dimensionless momentum, energy and species balance equations are solved by the spectral local linearization method that is employed to numerically integrate the coupled non-linear differential equations.

Findings

The response of the fluid flow, temperature and concentration to variational increase in the values of the parameters is graphically presented and discussed accordingly.

Originality/value

The validity of the method used was checked by comparing it with previous related article.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 September 2023

Thameem Hayath Basha, Sivaraj Ramachandran and Bongsoo Jang

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes…

Abstract

Purpose

The need for precise synthesis of customized designs has resulted in the development of advanced coating processes for modern nanomaterials. Achieving accuracy in these processes requires a deep understanding of thermophysical behavior, rheology and complex chemical reactions. The manufacturing flow processes for these coatings are intricate and involve heat and mass transfer phenomena. Magnetic nanoparticles are being used to create intelligent coatings that can be externally manipulated, making them highly desirable. In this study, a Keller box calculation is used to investigate the flow of a coating nanofluid containing a viscoelastic polymer over a circular cylinder.

Design/methodology/approach

The rheology of the coating polymer nanofluid is described using the viscoelastic model, while the effects of nanoscale are accounted for by using Buongiorno’s two-component model. The nonlinear PDEs are transformed into dimensionless PDEs via a nonsimilar transformation. The dimensionless PDEs are then solved using the Keller box method.

Findings

The transport phenomena are analyzed through a comprehensive parametric study that investigates the effects of various emerging parameters, including thermal radiation, Biot number, Eckert number, Brownian motion, magnetic field and thermophoresis. The results of the numerical analysis, such as the physical variables and flow field, are presented graphically. The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as fluid parameter increases. An increase in mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid.

Practical implications

Intelligent materials rely heavily on the critical characteristic of viscoelasticity, which displays both viscous and elastic effects. Viscoelastic models provide a comprehensive framework for capturing a range of polymeric characteristics, such as stress relaxation, retardation, stretching and molecular reorientation. Consequently, they are a valuable tool in smart coating technologies, as well as in various applications like supercapacitor electrodes, solar collector receivers and power generation. This study has practical applications in the field of coating engineering components that use smart magnetic nanofluids. The results of this research can be used to analyze the dimensions of velocity profiles, heat and mass transfer, which are important factors in coating engineering. The study is a valuable contribution to the literature because it takes into account Joule heating, nonlinear convection and viscous dissipation effects, which have a significant impact on the thermofluid transport characteristics of the coating.

Originality/value

The momentum boundary layer thickness of the viscoelastic polymer nanofluid decreases as the fluid parameter increases. An increase in the mixed convection parameter leads to a rise in the Nusselt number. The enhancement of the Brinkman number and Biot number results in an increase in the total entropy generation of the viscoelastic polymer nanofluid. Increasing the strength of the magnetic field promotes an increase in the density of the streamlines. An increase in the mixed convection parameter results in a decrease in the isotherms and isoconcentration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 May 2020

A. Roja, B.J. Gireesha and B.C. Prasannakumara

Miniaturization with high thermal performance and lower cost is one of the advanced developments in industrial science chemical and engineering fields including microheat…

Abstract

Purpose

Miniaturization with high thermal performance and lower cost is one of the advanced developments in industrial science chemical and engineering fields including microheat exchangers, micro mixers, micropumps, cooling microelectro mechanical devices, etc. In addition to this, the minimization of the entropy is the utilization of the energy of thermal devices. Based on this, in the present investigation, micropolar nanofluid flow through an inclined channel under the impacts of viscous dissipation and mixed convection with velocity slip and temperature jump has been numerically studied. Also the influence of magnetism and radiative heat flux is used.

Design/methodology/approach

The nonlinear system of ordinary differential equations are obtained by applying suitable dimensionless variables to the governing equations, and then the Runge–Kutta–Felhberg integration scheme is used to find the solution of velocity and temperature. Entropy generation and Bejan number are calculated via using these solutions.

Findings

It is established to notice that the entropy generation can be improved with the aspects of viscous dissipation, magnetism and radiative heat flux. The roles of angle of inclination (α), Eckert number (Ec), Reynolds number (Re), thermal radiation (Rd), material parameter (K),  slip parameter (δ), microinertial parameter (aj), magnetic parameter (M), Grashof number (Gr) and pressure gradient parameter (A) are demonstrated. It is found that the angle of inclination and Grashof number enhances the entropy production while it is diminished with material parameter and magnetic parameter.

Originality/value

Electrically conducting micropolar nanofluid flow through an inclined channel subjected to the friction irreversibility with temperature jump and velocity slip under the influence of radiative heat flux has been numerically investigated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 February 2020

Turkyilmazoglu Mustafa

The purpose of this study is to examine the non-Newtonian physical model of Eyring–Powell fluid for the rheology inside a long circular pipe.

Abstract

Purpose

The purpose of this study is to examine the non-Newtonian physical model of Eyring–Powell fluid for the rheology inside a long circular pipe.

Design/methodology/approach

Although many research studies are available now on this topic, none gives full solutions explicitly accessible.

Findings

It is proven here that the hydrodynamically fully developed fluid flow acknowledges the exact solution, influenced by a non-Newtonian parameter as well as the adverse pressure gradient parameter prevailing the flow domain. These parameters are unified under a new parameter known as the generalized Eyring–Powell parameter. Without the presented analytical data, it is impossible to detect the validity range of such physical non-Newtonian solutions, which is shown to be restricted.

Originality/value

Full solution of the energy equation for the thermally fully developed laminar regime is also presented under the assumption of uniform wall temperature at the pipe wall. The physical impacts of pertinent parameters on the rheology of the non-Newtonian fluid with regard to the Reynolds number, Darcy friction factor and pressure drop are easy to interpret from the derived formulae. Particularly, a decrease in the centerline velocity and an increase in the rate of heat transfer are clarified for the considered flow configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2012

Noreen Sher Akbar, S. Nadeem, T. Hayat and Awatif A. Hendi

The purpose of this study is to examine the effects of heat and mass transfer on the peristaltic flow of Eyring‐Powell fluid in a diverging tube.

Abstract

Purpose

The purpose of this study is to examine the effects of heat and mass transfer on the peristaltic flow of Eyring‐Powell fluid in a diverging tube.

Design/methodology/approach

The governing equations for Eyring‐Powell are modelled in cylindrical coordinates using long wavelength and low Reynolds number approximation. The resulting nonlinear differential equations are solved for velocity, temperature and concentration profile and pressure gradient using regular perturbation technique. Also, the numerical solutions for velocity profile have been computed employing finite difference technique. A comparative study is also presented for both the solutions.

Findings

Numerical integration has been performed to get the expression of pressure rise and frictional forces. Graphical results have been presented for pressure rise, frictional forces, temperature and concentration profile for various physical parameters of interest for five considered wave forms.

Originality/value

Trapping phenomena have been discussed at the end of the article.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 February 2024

Ahmed Jan, Muhammad F. Afzaal, Muhammad Mushtaq, Umer Farooq and Muzammil Hussain

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Abstract

Purpose

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Design/methodology/approach

The transport equations are transformed into nondimensional partial differential equations. The local nonsimilarity (LNS) technique is implemented to truncate nonsimilar dimensionless system. The LNS truncated equation can be treated as ordinary differential equations. The numerical results of the equation are accomplished through the implementation of the bvp4c solver, which leverages the fourth-order three-stage Lobatto IIIa formula as a finite difference scheme.

Findings

The findings of a comparative investigation carried out under diverse physical limitations demonstrate that ternary HNFs exhibit remarkably elevated thermal efficiency in contrast to conventional nanofluids.

Originality/value

The LNS approach (Mahesh et al., 2023; Khan et al., 20223; Farooq et al., 2023) that we have proposed is not currently being used to clarify the dynamical issue of HNF via porous media. The LNS method, in conjunction with the bvp4c up to its second truncation level, yields numerical solutions to nonlinear-coupled PDEs. Relevant results of the topic at hand, obtained by adjusting the appropriate parameters, are explained and shown visually via tables and diagrams.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 118