Search results

1 – 10 of 146
Article
Publication date: 12 December 2019

Jasmeet Kour, Sukhcharn Singh and Dharmesh C. Saxena

The purpose of this paper is to investigate the effect of residence time distribution in extruders along with the incorporation of nutraceuticals on the final quality of the…

Abstract

Purpose

The purpose of this paper is to investigate the effect of residence time distribution in extruders along with the incorporation of nutraceuticals on the final quality of the products with respect to several pivotal responses.

Design/methodology/approach

Corn–rice flour blend fortified with isolated nutraceutical concentrates at two (low and high) levels was extruded at barrel temperature (110°C), screw speed (260 rpm) and feed moisture (17 percent). Extrudates were collected at an interval of 24 s followed by analysis for radial expansion (RE), bulk density (BD), water absorption index (WAI), sensory score (SS), textural hardness, colorimetric values (L*, a* and b*) and color difference (E).

Findings

The entire data were fitted to zero- and first-order kinetic models. There was a gradual decrease in RE, SS and L* value, whereas an increase in BD, textural hardness and a* value of extrudates fortified with the three nutraceutical concentrates was observed with the successive time interval of 24 s along with a more pronounced effect on color difference (E) observed during the last stages of extrusion time. The zero-order kinetic model was well fitted for BD and a* value, whereas the first-order kinetic model showed better results for RE, WAI, SS, textural hardness, L* value, a* value and b* value of fortified extrudates.

Originality/value

Nutraceuticals like β-glucans, lignans and γ oryzanol exhibit numerous health-beneficial effects. This study analyzes the kinetics of changes in various responses of extrudates fortified with these nutraceutical concentrates during extrusion.

Details

British Food Journal, vol. 122 no. 2
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 29 May 2007

E.O. Sunny‐Roberts, E. Ananta and D. Knorr

Lactobacillus rhamnosus GG, a probiotic of human origin, known to have health beneficial effects can be exposed to osmotic stress when applied in food production as important…

Abstract

Purpose

Lactobacillus rhamnosus GG, a probiotic of human origin, known to have health beneficial effects can be exposed to osmotic stress when applied in food production as important quantities of sugars are added to the food product. The aim of this study is to assess the mode of action of non‐electrolytes stress on its viability.

Design/methodology/approach

Investigations were carried out on stationary phase cells treated with 0‐1.5M sugars, by means of flow cytometric method (FCM) and plate enumeration method. Osmotically induced changes of microbial carboxyfluorescein (cF)‐accumulation capacity and propidium iodide‐exclusion were monitored. The ability of the cells to extrude intracellularly accumulated cF upon glucose energization was ascertained as an additional vitality marker, in which the kinetics of dye extrusion were taken into consideration as well. Sugar analysis by HPLC was also carried out.

Findings

The results of FCM analysis revealed that with sucrose, only cells treated at 1.5M experienced membrane perturbation but there was a preservation of membrane integrity and enzymatic activity. There was no loss of viability as shown by plate counts. In contrast, the majority of trehalose‐treated cells had low extent of cF‐accumulation. For these samples a slight loss of viability was recorded on plating (logN/No ∼ −0.45). At 0.6M, cells had similar extrusion ability as the control cells upon glucose energization. However, 20 per cent of sucrose‐treated cells and 80 per cent of trehalose‐treated cells extruded the dye in the first 10min.

Originality/value

This finding pointed out the importance of trehalose to enhance the dye extrusion activity, which is regarded as an analogue of the capability of cells to extrude toxic compounds. Sugars exert different effects on the physiological and metabolic status of LGG but none caused a significant viability loss. LGG can be a choice probiotic bacterium in sugar‐rich food production e.g. candies, marmalade etc., in which exposure to high osmotic pressure is be expected.

Details

Nutrition & Food Science, vol. 37 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 11 September 2007

E.O. Sunny‐Roberts and D. Knorr

This paper aims to describe the physiological analysis of L. rhamnosus VTT E‐97800 and its adaptive response to osmotic stress induced by trehalose.

Abstract

Purpose

This paper aims to describe the physiological analysis of L. rhamnosus VTT E‐97800 and its adaptive response to osmotic stress induced by trehalose.

Design/methodology/approach

Cells of L. rhamnosus E800 in the stationary phase of growth were subjected to osmotic stress induced by trehalose treatments. The effects of osmotic stress on the viability of the study strain were determined by conducting flow cytometric analysis with carboxyfluorescein diacetate (cFDA) and propidium iodide (PI) and by observing the corresponding cells growth on MRS agar plates. Osmotic‐induced changes of esterase activity and membrane integrity were monitored. Ability to extrude intracellular accumulated cF (additional vitality marker) was taken into consideration.

Findings

The fluorescence‐based approach gave additional insights on osmotic induced changes of cellular events, which could not be explicitly assessed by culture techniques. Trehalose treatments caused a transient membrane permeabilization as revealed by a gradual decrease in esterase activity (a measure of enzyme activity and thus of viability) with increase in trehalose molarity. However, culturability on MRS agar was not significantly affected. Membrane integrity was maintained and there was an improvement in the ability of cells to extrude intracellular accumulated cF.

Originality/value

The paper provides a comparative study of the conventional culture techniques and the flow cytometric viability assessment which showed that esterase activity cannot be relied on to ascertain the culturability and viability status of an organism.

Details

British Food Journal, vol. 109 no. 9
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 27 September 2021

Michele Ciotti, Giampaolo Campana and Mattia Mele

This paper aims to present a survey concerning the accuracy of thermoplastic polymeric parts fabricated by additive manufacturing (AM). Based on the scientific literature, the aim…

Abstract

Purpose

This paper aims to present a survey concerning the accuracy of thermoplastic polymeric parts fabricated by additive manufacturing (AM). Based on the scientific literature, the aim is to provide an updated map of trends and gaps in this relevant research field. Several technologies and investigation methods are examined, thus giving an overview and analysis of the growing body of research.

Design/methodology/approach

Permutations of keywords, which concern materials, technologies and the accuracy of thermoplastic polymeric parts fabricated by AM, are used for a systematic search in peer-review databases. The selected articles are screened and ranked to identify those that are more relevant. A bibliometric analysis is performed based on investigated materials and applied technologies of published papers. Finally, each paper is categorised and discussed by considering the implemented research methods.

Findings

The interest in the accuracy of additively manufactured thermoplastics is increasing. The principal sources of inaccuracies are those shrinkages occurring during part solidification. The analysis of the research methods shows a predominance of empirical approaches. Due to the experimental context, those achievements have consequently limited applicability. Analytical and numerical models, which generally require huge computational costs when applied to complex products, are also numerous and are investigated in detail. Several articles deal with artificial intelligence tools and are gaining more and more attention.

Originality/value

The cross-technology survey on the accuracy issue highlights the common critical aspects of thermoplastics transformed by AM. An updated map of the recent research literature is achieved. The analysis shows the advantages and limitations of different research methods in this field, providing an overview of research trends and gaps.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 July 2021

Natalia von Windheim, David W. Collinson, Trent Lau, L. Catherine Brinson and Ken Gall

The purpose of this study is to understand how printing parameters and subsequent annealing impacts porosity and crystallinity of 3D printed polylactic acid (PLA) and how these…

Abstract

Purpose

The purpose of this study is to understand how printing parameters and subsequent annealing impacts porosity and crystallinity of 3D printed polylactic acid (PLA) and how these structural characteristics impact the printed material’s tensile strength in various build directions.

Design/methodology/approach

Two experimental studies were used, and samples with a flat vs upright print orientation were compared. The first experiment investigates a scan of printing parameters and annealing times and temperatures above the cold crystallization temperature (Tcc) for PLA. The second experiment investigates annealing above and below Tcc at multiple points over 12 h.

Findings

Annealing above Tcc does not significantly impact the porosity but it does increase crystallinity. The increase in crystallinity does not contribute to an increase in strength, suggesting that co-crystallization across the weld does not occur. Atomic force microscopy (AFM) images show that weld interfaces between printed fibers are still visible after annealing above Tcc, confirming the lack of co-crystallization. Annealing below Tcc does not significantly impact porosity or crystallinity. However, there is an increase in tensile strength. AFM images show that annealing below Tcc reduces thermal stresses that form at the interfaces during printing and slightly “heals” the as-printed interface resulting in an increase in tensile strength.

Originality/value

While annealing has been explored in the literature, it is unclear how it affects porosity, crystallinity and thermal stresses in fused filament fabrication PLA and how those factors contribute to mechanical properties. This study explains how co-crystallization across weld interfaces is necessary for crystallinity to increase strength and uses AFM as a technique to observe morphology at the weld.

Details

Rapid Prototyping Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 April 2023

Saratchandra Kundurthi, Felix Tran, Si Chen, Javed Mapkar and Mahmoodul Haq

Material extrusion additive manufacturing processes inevitably produce bead-shaped surface patterns on the walls of parts, which create stress concentrations under load. This…

137

Abstract

Purpose

Material extrusion additive manufacturing processes inevitably produce bead-shaped surface patterns on the walls of parts, which create stress concentrations under load. This study aims to investigate the influence of such stress concentrations on the strength along the build direction (“Z-strength”).

Design/methodology/approach

This work consists of two main parts – an experimental demonstration to show the significance of stress concentrations on the Z-strength, followed by numerical modeling to evaluate the theoretical stress concentration factors (kt) for such shapes. Meso-scale finite element analysis (FEA) was performed to evaluate kt at the roots of the intersecting bead shapes. The critical bead shape parameters influencing kt were identified, and parametric FEA studies were performed on different bead shapes by varying the normalized parameters.

Findings

The experimental results showed that up to a 40% reduction in the effective Z-strength could be attributed only to the presence of surface bead shapes. Bead overhang and root radius were identified as critical shape parameters influencing kt. The results of the parametric FEA studies were used to generate a single empirical equation to determine kt for any bead shape.

Originality/value

Predictive models for Z-strength often focus on crystallization kinetics and polymer chain interdiffusion to predict interlayer adhesion strength. The authors propose that the results of such studies must be combined with surface bead-shape induced stress concentration factors to obtain the combined, “effective” Z-strength.

Article
Publication date: 1 August 2019

Ognjan Luzanin, Dejan Movrin, Vassilis Stathopoulos, Pavlos Pandis, Tanja Radusin and Vera Guduric

This study aims to investigate the impact of layer thickness, extrusion temperature, extrusion speed and build plate temperature on the tensile strength, crystallinity achieved…

Abstract

Purpose

This study aims to investigate the impact of layer thickness, extrusion temperature, extrusion speed and build plate temperature on the tensile strength, crystallinity achieved during fabrication (herein, in-process crystallinity) and mesostructure of Poly(lactic acid) specimens. Both tensile strength and in-process crystallinity were optimized and verified as the function of processing parameters, and their relationship was thoroughly examined.

Design/methodology/approach

The four key technological parameters were systematically varied as factors on three levels, using the statistically designed experiment. Surface response methodology was used to optimize tensile strength and crystallinity for the given ranges of input factors. Optimized factor settings were used in a set of confirmation runs, where the result of optimization was experimentally confirmed. Material characterization was performed using differential scanning calorimetry and X-ray diffraction analysis, while the effect of processing parameters on mesostructure was examined by scanning electron microscopy.

Findings

Layer thickness and its quadratic effect are dominant contributors to tensile strength. Significant interaction between layer thickness and extrusion speed implies that these parameters should always be varied simultaneously within designed experiment to obtain adequate process model. As regards, the in-process crystallinity, extrusion speed is part of two significant interactions with plate temperature and layer thickness, respectively. Quality of mesostructure is vital contributor to tensile strength during FDM process, while the in-process crystallinity exhibited no impact, remaining below the 20 per cent margin regardless of process parameter settings.

Originality/value

According to available literature, there have been no previously published investigations which studied the effect of process parameters on tensile strength, mesostructure and in-process crystallinity through systematic variation of four critical processing parameters.

Details

Rapid Prototyping Journal, vol. 25 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 October 2020

Wilco M.H. Verbeeten, Miriam Lorenzo-Bañuelos, Rubén Saiz-Ortiz and Rodrigo González

The purpose of the present paper is to quantify and analyze the strain-rate dependence of the yield stress for both unfilled acrylonitrile-butadiene-styrene (ABS) and short carbon…

283

Abstract

Purpose

The purpose of the present paper is to quantify and analyze the strain-rate dependence of the yield stress for both unfilled acrylonitrile-butadiene-styrene (ABS) and short carbon fiber-reinforced ABS (CF-ABS) materials, fabricated via material extrusion additive manufacturing (ME-AM). Two distinct and opposite infill orientation angles were used to attain anisotropy effects.

Design/methodology/approach

Tensile test samples were printed with two different infill orientation angles. Uniaxial tensile tests were performed at five different constant linear strain rates. Apparent densities were measured to compensate for the voided structure. Scanning electron microscope fractography images were analyzed. An Eyring-type flow rule was evaluated for predicting the strain-rate-dependent yield stress.

Findings

Anisotropy was detected not only for the yield stresses but also for its strain-rate dependence. The short carbon fiber-filled material exhibited higher anisotropy than neat ABS material using the same ME-AM processing parameters. It seems that fiber and molecular orientation influence the strain-rate dependence. The Eyring-type flow rule can adequately describe the yield kinetics of ME-AM components, showing thermorheologically simple behavior.

Originality/value

A polymer’s viscoelastic behavior is paramount to be able to predict a component’s ultimate failure behavior. The results in this manuscript are important initial findings that can help to further develop predictive numerical tools for ME-AM technology. This is especially relevant because of the inherent anisotropy that ME-AM polymer components show. Furthermore, short carbon fiber-filled ABS enhanced anisotropy effects during ME-AM, which have not been measured previously.

Article
Publication date: 4 January 2013

Yogesh Jaluria

The numerical simulation of practical thermal processes is generally complicated because of multiple transport mechanisms and complex phenomena that commonly arise. In addition…

Abstract

Purpose

The numerical simulation of practical thermal processes is generally complicated because of multiple transport mechanisms and complex phenomena that commonly arise. In addition, the materials encountered are often not easily characterized and typically involve large property changes over the ranges of interest. The boundary conditions may not be properly defined and or may be unknown. However, it is important to obtain accurate and dependable numerical results from the simulation in order to study, design, and optimize most practical thermal processes of current and future interest. The purpose of this paper is to focus on the main challenges that are encountered in obtaining accurate numerical simulation results on practical thermal processes and systems.

Design/methodology/approach

A wide range of thermal systems is considered and the challenges faced in the numerical simulation are outlined. The methods that may be used to meet these challenges are presented in terms of grid, solution strategies, multiscale modeling and combined mechanisms. The models employed must be validated and the accuracy of the simulation results established if the simulation is to form the basis for improving existing systems and developing new ones.

Findings

Of particular interest are concerns like verification and validation, imposition of appropriate boundary conditions, and modelling of complex, multimode transport phenomena in multiple scales. Additional effects such as viscous dissipation, surface tension, buoyancy and rarefaction that could arise and complicate the modelling are discussed. Uncertainties that arise in material properties and in boundary conditions are also important in design and optimization. Large variations in the geometry and coupled multiple regions are also discussed.

Research limitations/implications

The paper is largely focused on numerical modeling and simulation. Experimental data are considered mainly for validation and for physical insight.

Practical implications

A wide variety of practical systems, ranging from materials processing to energy, cooling, and transportation is considered.

Originality/value

Future needs in this interesting and challenging area are also outlined in the paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 April 2014

Yogesh Jaluria

Multiple length and time scales arise in a wide variety of practical and fundamental problems. It is important to obtain accurate and validated numerical simulation results…

Abstract

Purpose

Multiple length and time scales arise in a wide variety of practical and fundamental problems. It is important to obtain accurate and validated numerical simulation results, considering the different scales that exist, in order to predict, design and optimize the behavior of practical thermal processes and systems. The purpose of this paper is to present modeling at the different length scales and then addresses the question of coupling the different models to obtain the overall model for the system or process.

Design/methodology/approach

Both numerical and experimental methods to obtain results at the different length scales, particularly at micro and nanoscales, are considered. Even though the paper focusses on length scales, multiple time scales lead to similar concerns and are also considered. The two circumstances considered in detail are multiple length scales in different domains and those in the same domain. These two cases have to be modeled quite differently in order to obtain a model for the overall process or system. The basic considerations involved in such a modeling are discussed. A wide range of thermal processes are considered and the methods that may be used are presented. The models employed must be validated and the accuracy of the simulation results established if the simulation results are to be used for prediction, control and design.

Findings

Of particular interest are concerns like verification and validation, imposition of appropriate boundary conditions, and modeling of complex, multimode transport phenomena in multiple scales. Additional effects such as viscous dissipation, surface tension, buoyancy and rarefaction that could arise and complicate the modeling are discussed. Uncertainties that arise in material properties and in boundary conditions are also important in design and optimization. Large variations in the geometry and coupled multiple regions are also discussed.

Research limitations/implications

The paper is largely focussed on multiple-scale considerations in thermal processes. Both numerical modeling/simulation and experimentation are considered, with the latter being used for validation and physical insight.

Practical implications

Several examples from materials processing, environmental flows and electronic systems, including data centers, are given to present the different techniques that may be used to achieve the desired level of accuracy and predictability.

Originality/value

Present state of the art and future needs in this interesting and challenging area are discussed, providing the impetus for further work. Different methods for treating multiscale problems are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 146