Search results

1 – 10 of 697
Article
Publication date: 10 November 2023

Yong Gui and Lanxin Zhang

Influenced by the constantly changing manufacturing environment, no single dispatching rule (SDR) can consistently obtain better scheduling results than other rules for the…

Abstract

Purpose

Influenced by the constantly changing manufacturing environment, no single dispatching rule (SDR) can consistently obtain better scheduling results than other rules for the dynamic job-shop scheduling problem (DJSP). Although the dynamic SDR selection classifier (DSSC) mined by traditional data-mining-based scheduling method has shown some improvement in comparison to an SDR, the enhancement is not significant since the rule selected by DSSC is still an SDR.

Design/methodology/approach

This paper presents a novel data-mining-based scheduling method for the DJSP with machine failure aiming at minimizing the makespan. Firstly, a scheduling priority relation model (SPRM) is constructed to determine the appropriate priority relation between two operations based on the production system state and the difference between their priority values calculated using multiple SDRs. Subsequently, a training sample acquisition mechanism based on the optimal scheduling schemes is proposed to acquire training samples for the SPRM. Furthermore, feature selection and machine learning are conducted using the genetic algorithm and extreme learning machine to mine the SPRM.

Findings

Results from numerical experiments demonstrate that the SPRM, mined by the proposed method, not only achieves better scheduling results in most manufacturing environments but also maintains a higher level of stability in diverse manufacturing environments than an SDR and the DSSC.

Originality/value

This paper constructs a SPRM and mines it based on data mining technologies to obtain better results than an SDR and the DSSC in various manufacturing environments.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 7 February 2022

Muralidhar Vaman Kamath, Shrilaxmi Prashanth, Mithesh Kumar and Adithya Tantri

The compressive strength of concrete depends on many interdependent parameters; its exact prediction is not that simple because of complex processes involved in strength…

Abstract

Purpose

The compressive strength of concrete depends on many interdependent parameters; its exact prediction is not that simple because of complex processes involved in strength development. This study aims to predict the compressive strength of normal concrete and high-performance concrete using four datasets.

Design/methodology/approach

In this paper, five established individual Machine Learning (ML) regression models have been compared: Decision Regression Tree, Random Forest Regression, Lasso Regression, Ridge Regression and Multiple-Linear regression. Four datasets were studied, two of which are previous research datasets, and two datasets are from the sophisticated lab using five established individual ML regression models.

Findings

The five statistical indicators like coefficient of determination (R2), mean absolute error, root mean squared error, Nash–Sutcliffe efficiency and mean absolute percentage error have been used to compare the performance of the models. The models are further compared using statistical indicators with previous studies. Lastly, to understand the variable effect of the predictor, the sensitivity and parametric analysis were carried out to find the performance of the variable.

Originality/value

The findings of this paper will allow readers to understand the factors involved in identifying the machine learning models and concrete datasets. In so doing, we hope that this research advances the toolset needed to predict compressive strength.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 November 2023

Yuling Ran, Wei Bai, Lingwei Kong, Henghui Fan, Xiujuan Yang and Xuemei Li

The purpose of this paper is to develop an appropriate machine learning model for predicting soil compaction degree while also examining the contribution rates of three…

Abstract

Purpose

The purpose of this paper is to develop an appropriate machine learning model for predicting soil compaction degree while also examining the contribution rates of three influential factors: moisture content, electrical conductivity and temperature, towards the prediction of soil compaction degree.

Design/methodology/approach

Taking fine-grained soil A and B as the research object, this paper utilized the laboratory test data, including compaction parameter (moisture content), electrical parameter (electrical conductivity) and temperature, to predict soil degree of compaction based on five types of commonly used machine learning models (19 models in total). According to the prediction results, these models were preliminarily compared and further evaluated.

Findings

The Gaussian process regression model has a good effect on the prediction of degree of compaction of the two kinds of soils: the error rates of the prediction of degree of compaction for fine-grained soil A and B are within 6 and 8%, respectively. As per the order, the contribution rates manifest as: moisture content > electrical conductivity >> temperature.

Originality/value

By using moisture content, electrical conductivity, temperature to predict the compaction degree directly, the predicted value of the compaction degree can be obtained with higher accuracy and the detection efficiency of the compaction degree can be improved.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 February 2024

Huiyu Cui, Honggang Guo, Jianzhou Wang and Yong Wang

With the rise in wine consumption, accurate wine price forecasts have significantly impacted restaurant and hotel purchasing decisions and inventory management. This study aims to…

Abstract

Purpose

With the rise in wine consumption, accurate wine price forecasts have significantly impacted restaurant and hotel purchasing decisions and inventory management. This study aims to develop a precise and effective wine price point and interval forecasting model.

Design/methodology/approach

The proposed forecast model uses an improved hybrid kernel extreme learning machine with an attention mechanism and a multi-objective swarm intelligent optimization algorithm to produce more accurate price estimates. To the best of the authors’ knowledge, this is the first attempt at applying artificial intelligence techniques to improve wine price prediction. Additionally, an effective method for predicting price intervals was constructed by leveraging the characteristics of the error distribution. This approach facilitates quantifying the uncertainty of wine price fluctuations, thus rendering decision-making by relevant practitioners more reliable and controllable.

Findings

The empirical findings indicated that the proposed forecast model provides accurate wine price predictions and reliable uncertainty analysis results. Compared with the benchmark models, the proposed model exhibited superiority in both one-step- and multi-step-ahead forecasts. Meanwhile, the model provides new evidence from artificial intelligence to explain wine prices and understand their driving factors.

Originality/value

This study is a pioneering attempt to evaluate the applicability and effectiveness of advanced artificial intelligence techniques in wine price forecasts. The proposed forecast model not only provides useful options for wine price forecasting but also introduces an innovative addition to existing forecasting research methods and literature.

Details

International Journal of Contemporary Hospitality Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 6 September 2023

Lenka Papíková and Mário Papík

European Parliament adopted a new directive on gender balance in corporate boards when by 2026, companies must employ 40% of the underrepresented sex into non-executive directors…

Abstract

Purpose

European Parliament adopted a new directive on gender balance in corporate boards when by 2026, companies must employ 40% of the underrepresented sex into non-executive directors or 33% among all directors. Therefore, this study aims to analyze the impact of gender diversity (GD) on board of directors and the shareholders’ structure and their impact on the likelihood of company bankruptcy during the COVID-19 pandemic.

Design/methodology/approach

The data sample consists of 1,351 companies for 2019 and 2020, of which 173 were large, 351 medium-sized companies and 827 small companies. Three bankruptcy indicators were tested for each company size, and extreme gradient boosting (XGBoost) and logistic regression models were developed. These models were then cross-validated by a 10-fold approach.

Findings

XGBoost models achieved area under curve (AUC) over 98%, which is 25% higher than AUC achieved by logistic regression. Prediction models with GD features performed slightly better than those without them. Furthermore, this study indicates the existence of critical mass between 30% and 50%, which decreases the probability of bankruptcy for small and medium companies. Furthermore, the representation of women in ownership structures above 50% decreases bankruptcy likelihood.

Originality/value

This is a pioneering study to explore GD topics by application of ensembled machine learning methods. Moreover, the study does analyze not only the GD of boards but also shareholders. A highly innovative approach is GD analysis based on company size performed in one study considering the COVID-19 pandemic perspective.

Details

Gender in Management: An International Journal , vol. 39 no. 3
Type: Research Article
ISSN: 1754-2413

Keywords

Article
Publication date: 20 December 2022

Ganisha N.P. Athaudage, H. Niles Perera, P.T. Ranil S. Sugathadasa, M. Mavin De Silva and Oshadhi K. Herath

The crude oil supply chain (COSC) is one of the most complex and largest supply chains in the world. It is easily vulnerable to extreme events. Recently, the severe acute…

Abstract

Purpose

The crude oil supply chain (COSC) is one of the most complex and largest supply chains in the world. It is easily vulnerable to extreme events. Recently, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (often known as COVID-19) pandemic created a massive imbalance between supply and demand which caused significant price fluctuations. The purpose of this study is to explore the influential factors affecting the international COSC in terms of consumption, production and price. Furthermore, it develops a model to predict the international crude oil price during disease outbreaks using Random Forest (RF) regression.

Design/methodology/approach

This study uses both qualitative and quantitative approaches. A qualitative study is conducted using a literature review to explore the influential factors on COSC. All the data are extracted from Web sources. In addition to COVID-19, four other diseases are considered to optimize the accuracy of predictive results. A principal component analysis is deployed to reduce the number of variables. A forecasting model is developed using RF regression.

Findings

The findings of the qualitative analysis characterize the factors that influence international COSC. The findings of quantitative analysis emphasize that production and consumption have a higher contribution to the variance of the data set. Also, this study found that the impact caused to crude oil price varies with the region. Most importantly, the model introduced using the RF technique provides a high predictive ability in short horizons such as infectious diseases. This study delivers future directions and insights to researchers and practitioners to expand the study further.

Originality/value

This is one of the few available pieces of research which uses the RF method in the context of crude oil price forecasting. Additionally, this study examines international COSC in the events of emergencies, specifically disease outbreaks using machine learning techniques.

Details

International Journal of Energy Sector Management, vol. 17 no. 6
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 29 January 2024

Juan Manuel Aristizábal, Edwin Tarapuez and Carlos Alberto Astudillo

This study aims to analyze the entrepreneurial intention (EI) of Colombian researchers using machine learning (ML) techniques, considering their academic activity, contexts and…

Abstract

Purpose

This study aims to analyze the entrepreneurial intention (EI) of Colombian researchers using machine learning (ML) techniques, considering their academic activity, contexts and social norms (SN).

Design/methodology/approach

Unsupervised classification techniques were applied, including principal component analysis, hierarchical clustering with the Ward method and a logistic model to evaluate the classification. This was done to group researchers according to their characteristics and EI.

Findings

The methodology used allowed the identification of three groups of academics with distinct characteristics, of which two showed a high presence of EI. The results indicate that EI is influenced by the connection with the private sector (consulting, intellectual property and applied research) and by the lack of institutional support from universities. Regarding SN, only the preference for entrepreneurial activity over being an employee and the social appreciation of entrepreneurial dedication were identified as predictors of EI.

Originality/value

The use of ML techniques to study the EI of researchers is uncommon. This study highlights the ability of the methodology used to identify differences between two groups of academics with similar characteristics but different levels of EI. One group was identified that, despite rejecting values associated with entrepreneurs, has a high predisposition to develop a career as an entrepreneur. This provides valuable information for designing policies that promote EI among Colombian researchers.

Details

Journal of Entrepreneurship in Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4604

Keywords

Content available
Article
Publication date: 4 January 2023

Shilpa Sonawani and Kailas Patil

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like…

Abstract

Purpose

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like India and China, it is highly recommended to monitor the quality of air which can help people with respiratory diseases, children and elderly people to take necessary precautions and stay safe at their homes. The purpose of this study is to detect air quality and perform predictions which could be part of smart home automation with the use of newer technology.

Design/methodology/approach

This study proposes an Internet-of-Things (IoT)-based air quality measurement, warning and prediction system for ambient assisted living. The proposed ambient assisted living system consists of low-cost air quality sensors and ESP32 controller with new generation embedded system architecture. It can detect Indoor Air Quality parameters like CO, PM2.5, NO2, O3, NH3, temperature, pressure, humidity, etc. The low cost sensor data are calibrated using machine learning techniques for performance improvement. The system has a novel prediction model, multiheaded convolutional neural networks-gated recurrent unit which can detect next hour pollution concentration. The model uses a transfer learning (TL) approach for prediction when the system is new and less data available for prediction. Any neighboring site data can be used to transfer knowledge for early predictions for the new system. It can have a mobile-based application which can send warning notifications to users if the Indoor Air Quality parameters exceed the specified threshold values. This is all required to take necessary measures against bad air quality.

Findings

The IoT-based system has implemented the TL framework, and the results of this study showed that the system works efficiently with performance improvement of 55.42% in RMSE scores for prediction at new target system with insufficient data.

Originality/value

This study demonstrates the implementation of an IoT system which uses low-cost sensors and deep learning model for predicting pollution concentration. The system is tackling the issues of the low-cost sensors for better performance. The novel approach of pretrained models and TL work very well at the new system having data insufficiency issues. This study contributes significantly with the usage of low-cost sensors, open-source advanced technology and performance improvement in prediction ability at new systems. Experimental results and findings are disclosed in this study. This will help install multiple new cost-effective monitoring stations in smart city for pollution forecasting.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 25 March 2024

Zhixue Liao, Xinyu Gou, Qiang Wei and Zhibin Xing

Online reviews serve as valuable sources of information, reflecting tourists’ attentions, preferences and sentiments. However, although the existing research has demonstrated that…

Abstract

Purpose

Online reviews serve as valuable sources of information, reflecting tourists’ attentions, preferences and sentiments. However, although the existing research has demonstrated that incorporating online review data can enhance the performance of tourism demand forecasting models, the reliability of online review data and consumers’ decision-making process have not been given adequate attention. To address the aforementioned problem, the purpose of this study is to forecast tourism demand using online review data derived from the analysis of review helpfulness.

Design/methodology/approach

The authors propose a novel “identification-first, forecasting-second” framework. This framework prioritizes the identification of helpful reviews through a comprehensive analysis of review helpfulness, followed by the integration of helpful online review data into the forecasting system. Using the SARIMAX model with helpful online review data sourced from TripAdvisor, this study forecasts tourist arrivals in Hong Kong during the period from August 2012 to June 2019. The SNAÏVE/SARIMA model was used as the benchmark model. Additionally, artificial intelligence models including long short-term memory, back propagation neural network, extreme learning machine and random forest models were used to assess the robustness of the results.

Findings

The results demonstrate that online review data are subject to noise and bias, which can adversely affect the accuracy of predictions when used directly. However, by identifying helpful online reviews beforehand and incorporating them into the forecasting process, a notable enhancement in predictive performance can be realized.

Originality/value

First, to the best of the authors’ knowledge, this study is one of the first to focus on the data issue of online reviews on tourism arrivals forecasting. Second, this study pioneers the integration of the consumer decision-making process into the domain of tourism demand forecasting, marking one of the earliest endeavors in this area. Third, this study makes a novel attempt to identify helpful online reviews based on reviews helpfulness analysis.

Details

Nankai Business Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8749

Keywords

Article
Publication date: 3 November 2022

Vinod Nistane

Rolling element bearings (REBs) are commonly used in rotating machinery such as pumps, motors, fans and other machineries. The REBs deteriorate over life cycle time. To know the…

Abstract

Purpose

Rolling element bearings (REBs) are commonly used in rotating machinery such as pumps, motors, fans and other machineries. The REBs deteriorate over life cycle time. To know the amount of deteriorate at any time, this paper aims to present a prognostics approach based on integrating optimize health indicator (OHI) and machine learning algorithm.

Design/methodology/approach

Proposed optimum prediction model would be used to evaluate the remaining useful life (RUL) of REBs. Initially, signal raw data are preprocessing through mother wavelet transform; after that, the primary fault features are extracted. Further, these features process to elevate the clarity of features using the random forest algorithm. Based on variable importance of features, the best representation of fault features is selected. Optimize the selected feature by adjusting weight vector using optimization techniques such as genetic algorithm (GA), sequential quadratic optimization (SQO) and multiobjective optimization (MOO). New OHIs are determined and apply to train the network. Finally, optimum predictive models are developed by integrating OHI and artificial neural network (ANN), K-mean clustering (KMC) (i.e. OHI–GA–ANN, OHI–SQO–ANN, OHI–MOO–ANN, OHI–GA–KMC, OHI–SQO–KMC and OHI–MOO–KMC).

Findings

Optimum prediction models performance are recorded and compared with the actual value. Finally, based on error term values best optimum prediction model is proposed for evaluation of RUL of REBs.

Originality/value

Proposed OHI–GA–KMC model is compared in terms of error values with previously published work. RUL predicted by OHI–GA–KMC model is smaller, giving the advantage of this method.

1 – 10 of 697