Search results

1 – 10 of 190
Article
Publication date: 2 October 2018

Yang Yu, Zhongjie Wang and Chengchao Lu

The purpose of this paper is to propose an extended Kalman particle filter (EPF) approach for dynamic state estimation of synchronous machine using the phasor measurement unit’s…

Abstract

Purpose

The purpose of this paper is to propose an extended Kalman particle filter (EPF) approach for dynamic state estimation of synchronous machine using the phasor measurement unit’s measurements.

Design/methodology/approach

EPF combines the extended Kalman filter (EKF) with the particle filter (PF) to accurately estimate the dynamic states of synchronous machine. EKF is used to make particles of PF transfer to the likelihood distribution from the previous distribution. Therefore, the sample impoverishment in the implementation of PF is able to be avoided.

Findings

The proposed method is capable of estimating the dynamic states of synchronous machine with high accuracy. The real-time capability of this method is also acceptable.

Practical implications

The effectiveness of the proposed approach is tested on IEEE 30-bus system.

Originality/value

Introducing EKF into PF, EPF is proposed to estimate the dynamic states of synchronous machine. The accuracy of a dynamic state estimation is increased.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 March 2019

Qimin Xu and Rong Jiang

This paper aims to propose a 3D-map aided tightly coupled positioning solution for land vehicles to reduce the errors caused by non-line-of-sight (NLOS) and multipath interference…

Abstract

Purpose

This paper aims to propose a 3D-map aided tightly coupled positioning solution for land vehicles to reduce the errors caused by non-line-of-sight (NLOS) and multipath interference in urban canyons.

Design/methodology/approach

First, a simple but efficient 3D-map is created by adding the building height information to the existing 2D-map. Then, through a designed effective satellite selection method, the distinct NLOS pseudo-range measurements can be excluded. Further, an enhanced extended Kalman particle filter algorithm is proposed to fuse the information from dual-constellation Global Navigation Satellite Systems and reduced inertial sensor system. The dependable degree of each selected satellite is adjusted through fuzzy logic to further mitigate the effect of misjudged LOS and multipath.

Findings

The proposed solution can improve positioning accuracy in urban canyons. The experimental results evaluate the effectiveness of the proposed solution and indicate that the proposed solution outperforms all the compared counterparts.

Originality/value

The effect of NLOS and multipath is addressed from both the observation level and fusion level. To the authors’ knowledge, mitigating the effect of misjudged LOS and multipath in the fusion algorithm of tightly coupled integration is seldom considered in existing literature.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 October 2018

Song Hua, Huiyin Huang, Fangfang Yin and Chunling Wei

This paper aims to propose a constant-gain Kalman Filter algorithm based on the projection method and constant dimension projection, which ensures that the dimension of the…

Abstract

Purpose

This paper aims to propose a constant-gain Kalman Filter algorithm based on the projection method and constant dimension projection, which ensures that the dimension of the observation matrix obtained is maintained when there is a satellite with multiple sensors.

Design/methodology/approach

First, a time-invariant observation matrix is determined with the projection method, which does not require the Jacobi matrix to be calculated. Second, the constant-gain matrix replaces the EKF (extended Kalman filter) gain matrix, which requires online computation, considerably improving the stability and real-time properties of the algorithm.

Findings

The simulation results indicate that compared to the EKF algorithm, the constant-gain Kalman filter algorithm has a considerably lower computational burden and improved real-time properties and stability without a significant loss of accuracy. The algorithm based on the constant dimension projection has better real-time properties, simpler computations and greater fault tolerance than the conventional EKF algorithm when handling an attitude determination system with three or more star trackers.

Originality/value

In satellite attitude determination systems, the constant-gain Kalman Filter algorithm based on the projection method reduces the large computational burden and improve the real-time properties of the EKF algorithm.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 2021

Jie Lin and Minghua Wei

With the rapid development and stable operated application of lithium-ion batteries used in uninterruptible power supply (UPS), the prediction of remaining useful life (RUL) for…

Abstract

Purpose

With the rapid development and stable operated application of lithium-ion batteries used in uninterruptible power supply (UPS), the prediction of remaining useful life (RUL) for lithium-ion battery played an important role. More and more researchers paid more attentions on the reliability and safety for lithium-ion batteries based on prediction of RUL. The purpose of this paper is to predict the life of lithium-ion battery based on auto regression and particle filter method.

Design/methodology/approach

In this paper, a simple and effective RUL prediction method based on the combination method of auto-regression (AR) time-series model and particle filter (PF) was proposed for lithium-ion battery. The proposed method deformed the double-exponential empirical degradation model and reduced the number of parameters for such model to improve the efficiency of training. By using the PF algorithm to track the process of lithium-ion battery capacity decline and modified observations of the state space equations, the proposed PF + AR model fully considered the declined process of batteries to meet more accurate prediction of RUL.

Findings

Experiments on CALCE dataset have fully compared the conventional PF algorithm and the AR + PF algorithm both on original exponential empirical degradation model and the deformed double-exponential one. Experimental results have shown that the proposed PF + AR method improved the prediction accuracy, decreases the error rate and reduces the uncertainty ranges of RUL, which was more suitable for the deformed double-exponential empirical degradation model.

Originality/value

In the running of UPS device based on lithium-ion battery, the proposed AR + PF combination algorithm will quickly, accurately and robustly predict the RUL of lithium-ion batteries, which had a strong application value in the stable operation of laboratory and other application scenarios.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 7 September 2023

Minghao Wang, Ming Cong, Dong Liu, Yu Du, Xiaojing Tian and Bing Li

The purpose of this study is to designed a robot odometry based on three dimensional (3D) laser point cloud data, inertial measurement unit (IMU) data and real-time kinematic…

Abstract

Purpose

The purpose of this study is to designed a robot odometry based on three dimensional (3D) laser point cloud data, inertial measurement unit (IMU) data and real-time kinematic (RTK) data in underground spatial features and gravity fluctuations environment. This method improves the mapping accuracy in two types of underground space: multi-layer space and large-scale scenarios.

Design/methodology/approach

An IMU–Laser–RTK fusion mapping algorithm based on Iterative Kalman Filter was proposed, and the observation equation and Jacobian matrix were derived. Aiming at the problem of inaccurate gravity estimation, the optimization of gravity is transformed into the optimization of SO(3), which avoids the problem of gravity over-parameterization.

Findings

Compared with the optimization method, the computational cost is reduced. Without relying on the wheel speed odometer, the robot synchronization localization and 3D environment modeling for multi-layer space are realized. The performance of the proposed algorithm is tested and compared in two types of underground space, and the robustness and accuracy in multi-layer space and large-scale scenarios are verified. The results show that the root mean square error of the proposed algorithm is 0.061 m, which achieves higher accuracy than other algorithms.

Originality/value

Based on the problem of large loop and low feature scale, this algorithm can better complete the map loop and self-positioning, and its root mean square error is more than double compared with other methods. The method proposed in this paper can better complete the autonomous positioning of the robot in the underground space with hierarchical feature degradation, and at the same time, an accurate 3D map can be constructed for subsequent research.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 December 2020

Sayyed Ali Akbar Shahriari

This paper aims to propose an 18th-order nonlinear model for doubly fed induction generator (DFIG) wind turbines. Based on the proposed model, which is more complete than the…

Abstract

Purpose

This paper aims to propose an 18th-order nonlinear model for doubly fed induction generator (DFIG) wind turbines. Based on the proposed model, which is more complete than the models previously developed, an extended Kalman filter (EKF) is used to estimate the DFIG state variables.

Design/methodology/approach

State estimation is a popular approach in power system control and monitoring because of minimizing measurement noise level and obtaining non-measured state variables. To estimate all state variables of DFIG wind turbine, it is necessary to develop a model that considers all state variables. So, an 18th-order nonlinear model is proposed for DFIG wind turbines. EKF is used to estimate the DFIG state variables based on the proposed model.

Findings

An 18th-order nonlinear model is proposed for DFIG wind turbines. Furthermore, based on the proposed model, its state variables are estimated. Simulation studies are done in four cases to verify the ability of the proposed model in the estimation of state variables under noisy, wind speed variation and fault condition. The results demonstrate priority of the proposed model in the estimation of DFIG state variables.

Originality/value

Evaluating DFIG model to estimate its state variables precisely.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 April 2016

Deepak B B V L and Pritpal Singh

In the previous decade, unmanned aerial vehicles (UAVs) have turned into a subject of enthusiasm for some exploration associations. UAVs are discovering applications in different…

1891

Abstract

Purpose

In the previous decade, unmanned aerial vehicles (UAVs) have turned into a subject of enthusiasm for some exploration associations. UAVs are discovering applications in different regions going from military applications to activity reconnaissance. The purpose of this paper is to overview a particular sort of UAV called quadrotor or quadcopter.

Design/methodology/approach

This paper includes the dynamic models of a quadrotor and the distinctive model-reliant and model-autonomous control systems and their correlation.

Findings

In the present time, focus has moved to outlining autonomous quadrotors. Ultimately, the paper examines the potential applications of quadrotors and their part in multi-operators frameworks.

Originality/value

This investigation deals with the review on various quadrotors, their applications and motion control strategies.

Details

International Journal of Intelligent Unmanned Systems, vol. 4 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 31 January 2020

Sayyed Ali Akbar Shahriari, Mohammad Mohammadi and Mahdi Raoofat

The purpose of this study is to propose a control scheme based on state estimation algorithm to improve zero or low-voltage ride-through capability of permanent magnet synchronous…

Abstract

Purpose

The purpose of this study is to propose a control scheme based on state estimation algorithm to improve zero or low-voltage ride-through capability of permanent magnet synchronous generator (PMSG) wind turbine.

Design/methodology/approach

Based on the updated grid codes, during and after faults, it is necessary to ensure wind energy generation in the network. PMSG is a type of wind energy technology that is growing rapidly in the network. The control scheme based on extended Kalman filter (EKF) is proposed to improve the low voltage ride-through (LVRT) capability of the PMSG. In the control scheme, because the state estimation algorithm is applied, the requirement of DC link voltage measurement device and generator speed sensor is removed. Furthermore, by applying this technique, the extent of possible noise on measurement tools is reduced.

Findings

In the proposed control scheme, zero or low-voltage ride-through capability of PMSG is enhanced. Furthermore, the requirement of DC link voltage measurement device and generator speed sensor is removed and the amount of possible noise on the measurement tools is minimized. To evaluate the ability of the proposed method, four different cases, including short and long duration short circuit fault close to PMSG in the presence and absence of measurement noise are studied. The results confirm the superiority of the proposed method.

Originality/value

This study introduces EKF to enhance LVRT capability of a PMSG wind turbine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 October 2018

Ravinder Singh and Kuldeep Singh Nagla

Modern service robots are designed to work in a complex indoor environment, in which the robot has to interact with the objects in different ambient light intensities (day light…

Abstract

Purpose

Modern service robots are designed to work in a complex indoor environment, in which the robot has to interact with the objects in different ambient light intensities (day light, tube light, halogen light and dark ambiance). The variations in sudden ambient light intensities often cause an error in the sensory information of optical sensors like laser scanner, which reduce the reliability of the sensor in applications such as mapping, path planning and object detection of a mobile robot. Laser scanner is an optical sensor, so sensory information depends upon parameters like surface reflectivity, ambient light condition, texture of the targets, etc. The purposes of this research are to investigate and remove the effect of variation in ambient light conditions on the laser scanner to achieve robust autonomous mobile robot navigation.

Design/methodology/approach

The objective of this study is to analyze the effect of ambient light condition (dark ambiance, tube light and halogen bulb) on the accuracy of the laser scanner for the robust autonomous navigation of mobile robot in diverse illumination environments. A proposed AIFA (Adaptive Intensity Filter Algorithm) approach is designed in robot operating system (ROS) and implemented on a mobile robot fitted with laser scanner to reduce the effect of high-intensity ambiance illumination of the environment.

Findings

It has been experimentally found that the variation in the measured distance in dark is more consistent and accurate as compared to the sensory information taken in high-intensity tube light/halogen bulbs and in sunlight. The proposed AIFA approach is implement on a laser scanner fitted on a mobile robot which navigates in the high-intensity ambiance-illuminating complex environment. During autonomous navigation of mobile robot, while implementing the AIFA filter, the proportion of cession with the obstacles is reduce to 23 per cent lesser as compared to conventional approaches.

Originality/value

The proposed AIFA approach reduced the effect of the varying ambient light conditions in the sensory information of laser scanner for the applications such as autonomous navigation, path planning, mapping, etc. in diverse ambiance environment.

Details

World Journal of Engineering, vol. 15 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 October 2019

Ravinder Singh and Kuldeep Singh Nagla

The purpose of this research is to provide the necessarily and resourceful information regarding range sensors to select the best fit sensor for robust autonomous navigation…

Abstract

Purpose

The purpose of this research is to provide the necessarily and resourceful information regarding range sensors to select the best fit sensor for robust autonomous navigation. Autonomous navigation is an emerging segment in the field of mobile robot in which the mobile robot navigates in the environment with high level of autonomy by lacking human interactions. Sensor-based perception is a prevailing aspect in the autonomous navigation of mobile robot along with localization and path planning. Various range sensors are used to get the efficient perception of the environment, but selecting the best-fit sensor to solve the navigation problem is still a vital assignment.

Design/methodology/approach

Autonomous navigation relies on the sensory information of various sensors, and each sensor relies on various operational parameters/characteristic for the reliable functioning. A simple strategy shown in this proposed study to select the best-fit sensor based on various parameters such as environment, 2 D/3D navigation, accuracy, speed, environmental conditions, etc. for the reliable autonomous navigation of a mobile robot.

Findings

This paper provides a comparative analysis for the diverse range sensors used in mobile robotics with respect to various aspects such as accuracy, computational load, 2D/3D navigation, environmental conditions, etc. to opt the best-fit sensors for achieving robust navigation of autonomous mobile robot.

Originality/value

This paper provides a straightforward platform for the researchers to select the best range sensor for the diverse robotics application.

1 – 10 of 190