Search results

1 – 10 of 79
Article
Publication date: 18 December 2023

Søren Munch Lindhard, Astrid Heidemann Lassen, Yang Cheng, Matteo Musso, Geng Wang and Shaoping Bai

Exoskeletons are moving into industries with the potential to reduce muscle strains and prevent occupational injuries. Although exoskeletons have been designed and tested in…

Abstract

Purpose

Exoskeletons are moving into industries with the potential to reduce muscle strains and prevent occupational injuries. Although exoskeletons have been designed and tested in laboratory settings, rare empirical studies of their application in construction have been reported. Therefore, the purpose of this study is on in a real-life setting testing the applicability of adopting exoskeletons in the construction industry.

Design/methodology/approach

A feasibility study of exoskeletons in construction is conducted by testing a passive exoskeleton, designed for shoulder support. Five bricklayers tested in a two-month period the exoskeleton, each wearing it for a three-day period while carrying out normal work activities. Test data in terms of interviews were collected and analyzed using qualitative content analysis.

Findings

The application of exoskeletons in construction revealed several limitations, where the two primary ones are the exoskeleton is not designed while considering the tasks of a bricklayer causing several challenges and the exoskeleton only supports a single upward motion while limiting other movements and even counteracted when a downward movement was necessary.

Originality/value

The identified challenges could easily have been revealed by coupling the design and testing of exoskeletons to actual application. Thus, the design approach needs to be reversed. Instead of designing an exoskeleton to support a specific body part or motion and then identifying where it is applicable, it should target specific industries and focus on the actual work and movements and the necessary support. As part of the change, the design metrics should be reevaluated to reflect the work to support.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 January 2024

Yuepeng Zhang, Guangzhong Cao, Linglong Li and Dongfeng Diao

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in…

Abstract

Purpose

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction motion.

Design/methodology/approach

A trajectory error compensation method based on admittance-extended Kalman filter (AEKF) error fusion for human–exoskeleton interaction control. The admittance controller is used to calculate the trajectory error adjustment through the feedback human–exoskeleton interaction force, and the actual trajectory error is obtained through the encoder feedback of exoskeleton and the designed trajectory. By using the fusion and prediction characteristics of EKF, the calculated trajectory error adjustment and the actual error are fused to obtain a new trajectory error compensation, which is feedback to the knee exoskeleton controller. This method is designed to be capable of improving the trajectory tracking performance of the knee exoskeleton and enhancing the compliance of knee exoskeleton interaction.

Findings

Six volunteers conducted comparative experiments on four different motion frequencies. The experimental results show that this method can effectively improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction.

Originality/value

The AEKF method first uses the data fusion idea to fuse the estimated error with measurement errors, obtaining more accurate trajectory error compensation for the knee exoskeleton motion control. This work provides great benefits for the trajectory tracking performance and compliance of lower limb exoskeletons in human–exoskeleton interaction movements.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 13 October 2023

Nihar Gonsalves, Adedeji Afolabi and Abiola Abosede Akanmu

Low back disorder is one of the most prevalent and costly injuries in the construction industry. Back-support exoskeletons are increasingly perceived as promising solutions…

Abstract

Purpose

Low back disorder is one of the most prevalent and costly injuries in the construction industry. Back-support exoskeletons are increasingly perceived as promising solutions. However, the intended benefits of exoskeletons may not be realized if intention-to-use the device is low. Social influence could increase intention-to-use exoskeletons. This study aims to evaluate the impact of social influence on construction workers' intention-to-use back-support exoskeletons.

Design/methodology/approach

A field study involving 37 construction workers was conducted, with workers who used exoskeleton for one week, and their peers and supervisors. Data were collected using questionnaires and semi-structured interviews, and analyzed using descriptive statistics and thematic analysis, respectively.

Findings

The workers felt that the exoskeleton is easy to use and the functions are well integrated. Workers' intention-to-use exoskeleton was mainly influenced by employers providing and requiring the use of the device. The attitude of the workers and the perception of peers and supervisors did not have a significant impact on workers' intention-to-use exoskeleton, whereas the subjective norm of construction workers had a positive impact on the intention-to-use exoskeletons.

Research limitations/implications

The study involved only 37 workers, including 15 workers who used the exoskeleton, and 14 peers and 8 supervisors of the workers.

Originality/value

This study contributes to existing knowledge on the influence of social influence on intention-to-use exoskeletons. The study also highlights how exoskeleton designs and the construction workplace can influence behavioral intention-to-use exoskeletons.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 18 September 2023

Yali Han, Shunyu Liu, Jiachen Chang, Han Sun, Shenyan Li, Haitao Gao and Zhuangzhuang Jin

This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.

Abstract

Purpose

This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.

Design/methodology/approach

In this paper, the valve-controlled asymmetrical hydraulic cylinder is selected for driving the hip and knee joint of exoskeleton. Pressure shoe is developed that purpose on detecting changes in plantar force, and a fuzzy recognition algorithm using plantar pressure is proposed. Dynamic model of the exoskeleton is established, and the sliding mode control is developed to implement the position tracking of exoskeleton. A series of prototype experiments including benchtop test, full assistance, partial assistance and loaded walking experiments are set up to verify the tracking performance and power-assisted effect of the proposed exoskeleton.

Findings

The control performance of PID control and sliding mode control are compared. The experimental data shows the tracking trajectories and tracking errors of sliding mode control and demonstrate its good robustness to nonlinearities. sEMG of the gastrocnemius muscle tends to be significantly weakened during assisted walking.

Originality/value

In this paper, a structure that the knee joint and hip joint driven by the valve-controlled asymmetrical cylinder is used to provide walking assistance for the wearer. The sliding mode control is proposed to deal with the nonlinearities during joint rotation and fluids. It shows great robustness and frequency adaptability through experiments under different motion frequencies and assistance modes. The design and control method of exoskeleton is a good attempt, which takes positive impacts on the productivity or quality of the life of wearers.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 November 2023

Akinwale Okunola, Abiola Abosede Akanmu and Anthony Olukayode Yusuf

Low back disorders are more predominant among construction trade workers than their counterparts in other industry sectors. Floor layers are among the top artisans that are…

Abstract

Purpose

Low back disorders are more predominant among construction trade workers than their counterparts in other industry sectors. Floor layers are among the top artisans that are severely affected by low back disorders. Exoskeletons are increasingly being perceived as ergonomic solutions. This study aims to compare the efficacy of passive and active back-support exoskeletons by measuring range of motion, perceived discomfort, usability, perceived rate of exertion and cognitive load during a simulated flooring task experiment.

Design/methodology/approach

In this study eight participants were engaged in a repetitive timber flooring task performed with passive and active back-support exoskeletons. Subjective and objective data were collected to assess the risks associated with using both exoskeletons. Descriptive statistics were used for analysis. Scheirer-Ray-Hare test and Wilcoxon signed-rank test were adopted to compare the exoskeleton conditions.

Findings

The results show no significant differences in the range of motion (except for a lifting cycle), perceived level of discomfort and perceived level of exertion between the two exoskeletons. Significant difference in overall cognitive load was observed. The usability results show that the active back-support exoskeleton made task execution easier with less restriction on movement.

Research limitations/implications

The flooring task is simulated in a laboratory environment with only eight male participants.

Originality/value

This study contributes to the scarce body of knowledge on the usage comparison of passive and active exoskeletons for construction work.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 1 June 2023

Nihar J. Gonsalves, Anthony Yusuf, Omobolanle Ogunseiju and Abiola Akanmu

Concrete workers perform physically demanding work in awkward postures, exposing their backs to musculoskeletal disorders. Back-support exoskeletons are promising ergonomic…

Abstract

Purpose

Concrete workers perform physically demanding work in awkward postures, exposing their backs to musculoskeletal disorders. Back-support exoskeletons are promising ergonomic interventions designed to reduce the risks of back disorders. However, the suitability of exoskeletons for enhancing performance of concrete workers has not been largely explored. This study aims to assess a passive back-support exoskeleton for concrete work in terms of the impact on the body, usability and benefits of the exoskeleton, and potential design modifications.

Design/methodology/approach

Concrete workers performed work with a passive back-support exoskeleton. Subjective and qualitative measures were employed to capture their perception of the exoskeleton, at the middle and end of the work, in terms of discomfort to their body parts, ease of use, comfort, performance and safety of the exoskeleton, and their experience using the exoskeleton. These were analyzed using descriptive statistics and thematic analysis.

Findings

The exoskeleton reduced stress on the lower back but caused discomfort to other body parts. Significant correlations were observed between perceived discomfort and usability measures. Design modifications are needed to improve the compatibility of the exoskeleton with the existing safety gears, reduce discomfort at chest and thigh, and improve ease of use of the exoskeleton.

Research limitations/implications

The study was conducted with eight concrete workers who used the exoskeleton for four hours.

Originality/value

This study contributes to existing knowledge on human-wearable robot interaction and provides suggestions for adapting exoskeleton designs for construction work.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 December 2022

Meby Mathew, Mervin Joe Thomas, M.G. Navaneeth, Shifa Sulaiman, A.N. Amudhan and A.P. Sudheer

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this…

Abstract

Purpose

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this field. The shortcomings and technological developments in sensing the input signals to enable the desired motions, actuation, control and training methods are explained for further improvements in exoskeleton research.

Design/methodology/approach

Search platforms such as Web of Science, IEEE, Scopus and PubMed were used to collect the literature. The total number of recent articles referred to in this review paper with relevant keywords is filtered to 143.

Findings

Exoskeletons are getting smarter often with the integration of various modern tools to enhance the effectiveness of rehabilitation. The recent applications of bio signal sensing for rehabilitation to perform user-desired actions promote the development of independent exoskeleton systems. The modern concepts of artificial intelligence and machine learning enable the implementation of brain–computer interfacing (BCI) and hybrid BCIs in exoskeletons. Likewise, novel actuation techniques are necessary to overcome the significant challenges seen in conventional exoskeletons, such as the high-power requirements, poor back drivability, bulkiness and low energy efficiency. Implementation of suitable controller algorithms facilitates the instantaneous correction of actuation signals for all joints to obtain the desired motion. Furthermore, applying the traditional rehabilitation training methods is monotonous and exhausting for the user and the trainer. The incorporation of games, virtual reality (VR) and augmented reality (AR) technologies in exoskeletons has made rehabilitation training far more effective in recent times. The combination of electroencephalogram and electromyography-based hybrid BCI is desirable for signal sensing and controlling the exoskeletons based on user intentions. The challenges faced with actuation can be resolved by developing advanced power sources with minimal size and weight, easy portability, lower cost and good energy storage capacity. Implementation of novel smart materials enables a colossal scope for actuation in future exoskeleton developments. Improved versions of sliding mode control reported in the literature are suitable for robust control of nonlinear exoskeleton models. Optimizing the controller parameters with the help of evolutionary algorithms is also an effective method for exoskeleton control. The experiments using VR/AR and games for rehabilitation training yielded promising results as the performance of patients improved substantially.

Research limitations/implications

Robotic exoskeleton-based rehabilitation will help to reduce the fatigue of physiotherapists. Repeated and intention-based exercise will improve the recovery of the affected part at a faster pace. Improved rehabilitation training methods like VR/AR-based technologies help in motivating the subject.

Originality/value

The paper describes the recent methods for signal sensing, actuation, control and rehabilitation training approaches used in developing exoskeletons. All these areas are key elements in an exoskeleton where the review papers are published very limitedly. Therefore, this paper will stand as a guide for the researchers working in this domain.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 October 2021

Abhilash C.R., Sriraksha Murali, M. Abdul Haq, Tanay N. Bysani and N.S. Narahari

In certain industrial operations, workers are required to stand for a prolonged duration. This leads to muscular fatigue in the legs, posing a threat to the productivity and…

Abstract

Purpose

In certain industrial operations, workers are required to stand for a prolonged duration. This leads to muscular fatigue in the legs, posing a threat to the productivity and well-being of the workers. This paper aims to address this problem of women in the clothing industry with an exoskeleton designed for lower extremities and improve productivity.

Design/methodology/approach

Ulrich’s product design approach has been followed with suitable modifications. The methodology involves a study to justify the need for this product and terminating at the physical and virtual evaluations of the product. Required anthropometric parameters are considered along the design process.

Findings

The exoskeleton discussed in this paper is an innovative product made of Aluminium 6061 alloy. During the simulation phase of the product, total von-mises stresses to a part bearing 1 leg were 31.5 MPa, 94.7 MPa and 284 MPa for aluminium, SS308 and springs, respectively. These values are below the yield limit by a great margin. Based on a user survey of this product, 72% of the targeted customers were interested in buying. Also, comparing electromyography (EMG) mean value of the voltage between workers’ leg with and without exoskeleton revealed that there was an improvement in the voltage by 2.5% when exoskeleton was used.

Originality/value

This paper emphasizes, for the first time – the necessity of an exoskeleton indigenized for the Indian population and the process of realizing it by designing an exoskeleton.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 December 2023

Zhirui Zhao, Lina Hao, Guanghong Tao, Hongjun Liu and Lihua Shen

This study discusses the tracking trajectory issue of the exoskeleton under the bounded disturbance and designs an useful tracking trajectory control method to solve it. By using…

124

Abstract

Purpose

This study discusses the tracking trajectory issue of the exoskeleton under the bounded disturbance and designs an useful tracking trajectory control method to solve it. By using the proposed control method, the tracking error can be successfully convergence to the assigned boundary. Meanwhile, the chattering effect caused by the actuators is already reduced, and the tracking performance of the pneumatic artificial muscles (PAMs) elbow exoskeleton is improved effectively.

Design/methodology/approach

A prescribed performance sliding mode control method was developed in this study to fulfill the joint position tracking trajectory task on the elbow exoskeleton driven by two PAMs. In terms of the control structure, a dynamic model was built by conforming to the adaptive law to compensate for the time variety and uncertainty exhibited by the system. Subsequently, a super-twisting algorithm-based second-order sliding mode control method was subjected to the exoskeleton under the boundedness of external disturbance. Moreover, the prescribed performance control method exhibits a smooth prescribed function with an error transformation function to ensure the tracking error can be finally convergent to the pre-designed requirement.

Findings

From the theoretical perspective, the stability of the control method was verified through Lyapunov synthesis. On that basis, the tracking performance of the proposed control method was confirmed through the simulation and the manikin model experiment.

Originality/value

As revealed by the results of this study, the proposed control method sufficiently applies to the PAMs elbow exoskeleton for tracking trajectory, which means it has potential application in the actual robot-assisted passive rehabilitation tasks.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 April 2023

Muye Pang, Ruiqing Li, Ying Ding, Biwei Tang, Jing Luo and Kui Xiang

This paper aims to optimize the stiffness coefficient of the elastic element for a passive waist assistive exoskeleton (WAE). There is a tradeoff between stiffness coefficient of…

Abstract

Purpose

This paper aims to optimize the stiffness coefficient of the elastic element for a passive waist assistive exoskeleton (WAE). There is a tradeoff between stiffness coefficient of elastic element of the exoskeleton and work efficiency of the wearer, because elastic element affects original bending motion of the wearer and the force requirement of erector spinae is compensated by the other muscles. However, there is no accepted conclusion on how to determine the proper stiffness coefficient, especially with respected to the effort of groups of muscles, not only erector spinae.

Design/methodology/approach

In this study, a consumption indicator based on muscle fatigue of seven muscles is proposed and a Bayesian-based human-in-the-loop optimization approach is adopted to optimize the stiffness coefficient. Pneumatic artificial muscles are used to replace the mechanical elastic part to adjust the assistive force automatically. The proposed optimization method is verified by the way of load-lifting experiments with three different conditions: without exoskeleton, with fixed air pressure and with optimized air pressure. Six subjects participated in the experiment and each experiment is performed in different day.

Findings

Compared with No-Exo condition and static assistance condition, the parameter-optimized waist exoskeleton averagely reduces muscle fatigue of the six subjects by 45.30 ± 29.14% and 30.94 ± 30.29%, respectively. The experimental results indicate that the proposed method is effective to reduce muscle fatigue during stoop lifting task.

Originality/value

This paper provides a novel cost function construction method based on muscle fatigue and muscle synergy for passive WAE stiffness optimization.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 79