Search results

1 – 6 of 6
Article
Publication date: 20 December 2023

Lifeng Wang, Jiwei Bi, Long Liu and Ziwang Xiao

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state…

Abstract

Purpose

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state and strain distribution of low-height prestressed T-beams.

Design/methodology/approach

First, two 13 m-long full-size test beams were fabricated with different positions of prestressed steel bundles in the span. The load–deflection curves and failure patterns of each test beam were obtained through static load tests. Secondly, the test data were used to validate the finite element model developed to simulate the flexural behavior of low-height prestressed T-beams. Finally, the influence of different parameters (the number of prestressed steel bundles, initial prestress and concrete strength grade) on the flexural performance of the test beams is studied by using a finite element model.

Findings

The test results show that when the distance of the prestressed steel beam from the bottom height of the test beam increases from 40 to 120 mm, the cracking load of the test beam decreases from 550.00 to 450.00 kN, reducing by 18.18%, and the ultimate load decreases from 1338.15 to 1227.66 kN, reducing by 8.26%, therefore, the increase of the height of the prestressed steel beam reduces the bearing capacity of the test beam. The numerical simulation results show that when the number of steel bundles increases from 2 to 9, the cracking load increases by 183.60%, the yield load increases by 117.71% and the ultimate load increases by 132.95%. Therefore, the increase in the number of prestressed steel bundles can increase the cracking load, yield load and ultimate load of the test beam. When the initial prestress is from 695 to 1,395 MPa, the cracking load increases by 69.20%, the yield load of the bottom reinforcement increases by 31.61% and the ultimate load increases by 3.97%. Therefore, increasing the initial prestress can increase the cracking load and yield load of the test beam, but it has little effect on the ultimate load. The strength grade of concrete increases from C30 to C80, the cracking load is about 455.00 kN, the yield load is about 850.00 kN and the ultimate load is increased by 4.90%. Therefore, the improvement in concrete strength grade has little influence on the bearing capacity of the test beam.

Originality/value

Based on the experimental study, the bearing capacity of low-height prestressed T-beams with different prestressed steel beam heights is calculated by finite element simulation, and the influence of different parameters on the bearing capacity is discussed. This method not only ensures the accuracy of bearing capacity assessment, but also does not require a large number of samples and has a certain economy. The study of prestressed low-height T-beams is of great significance for understanding the principle and application of prestressed technology. Research on the mechanical behavior and performance of low-height prestressed T beams can provide a scientific basis and technical support for the design and construction of prestressed concrete structures. In addition, the study of prestressed low-height T-beams can also provide a reference for the optimization design and construction of other structural types.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 January 2022

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

The partially prestressed concrete beam with unbonded tendon is still an active field of research because of the difficulty in analyzing and understanding its behavior. The…

Abstract

Purpose

The partially prestressed concrete beam with unbonded tendon is still an active field of research because of the difficulty in analyzing and understanding its behavior. The finite-element (FE) simulation of such beams using numerical software is very scarce in the literature and therefore this study is taken to demonstrate the modeling aspects of unbonded partially prestressed concrete (UPPSC) beams. This study aims to present the three-dimensional (3-D) nonlinear FE simulations of UPPSC beams subjected to monotonic static loadings using the numerical analysis package ANSYS.

Design/methodology/approach

The sensitivity study is carried out with three different mesh densities to obtain the optimum elements that reflect on the load–deflection behavior of numerical models, and the model with optimum element density is used further to model all the UPPSC beams in this study. Three half-symmetry FE model is constructed in ANSYS parametric design language domain with proper boundary conditions at the symmetry plane and support to achieve the same response as that of the full-scale experimental beam available in the literature. The linear and nonlinear material behavior of prestressing tendon and conventional steel reinforcements, concrete and anchorage and loading plates are modeled using link180, solid65 and solid185 elements, respectively. The Newton–Raphson iteration method is used to solve the nonlinear solution of the FE models.

Findings

The evolution of concrete cracking at critical loadings, yielding of nonprestressed steel reinforcements, stress increment in the prestressing tendon, stresses in concrete elements and the complete load–deflection behavior of the UPPSC beams are well predicted by the proposed FE model. The maximum discrepancy of ultimate moments and deflections of the validated FE models exhibit 13% and −5%, respectively, in comparison with the experimental results.

Practical implications

The FE analysis of UPPSC beams is done using ANSYS software, which is a versatile tool in contrast to the experimental testing to study the stress increments in the unbonded tendons and assess the complete nonlinear response of partially prestressed concrete beams. The validated numerical model and the techniques presented in this study can be readily used to explore the parametric analysis of UPPSC beams.

Originality/value

The developed model is capable of predicting the strength and nonlinear behavior of UPPSC beams with reasonable accuracy. The load–deflection plot captured by the FE model is corroborated with the experimental data existing in the literature and the FE results exhibit good agreement against the experimentally tested beams, which expresses the practicability of using FE analysis for the nonlinear response of UPPSC beams using ANSYS software.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 17 November 2023

Jinyu Zhang, Danni Shen, Yuxiang Yu, Defu Bao, Chao Li and Jiapei Qin

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused…

Abstract

Purpose

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused deposition modeling (FDM) 3D printing technology, and tries to refine the product development path for this composite.

Design/methodology/approach

Polylactic acid (PLA) printing filaments were deposited on prestretched Lycra-knitted fabric using desktop-level FDM 3D printing technology to construct a three-layer structure of thermally responsive 4D textiles. Subsequently, the effects of different PLA thicknesses and Lycra knit fabric relative elongation on the permanent shape of thermally responsive 4D textiles were studied. Finally, a simulation program was written, and a case in this study demonstrates the usage of thermally responsive 4D textiles and the simulation program to design a wrist support product.

Findings

The constructed three-layer structure of PLA and Lycra knitted fabric can self-form under thermal stimulation. The material can also achieve reversible transformation between a permanent shape and multiple temporary shapes. Thinner PLA deposition and higher relative elongation of the Lycra-knitted fabric result in the greater curvature of the permanent shape of the thermally responsive 4D textile. The simulation program accurately predicted the permanent form of multiple basic shapes.

Originality/value

The proposed method enables 4D textiles to directly self-form upon thermal, which helps to improve the manufacturing efficiency of 4D textiles. The thermal responsiveness of the composite also contributes to building an intelligent human–material–environment interaction system.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 November 2023

Guangxi Zhang and Sunfan Mao

The use of social media is an integral part of modern life, yet the impact of social media on creativity is a paradox. Drawing on the conservation of resources theory, the authors…

Abstract

Purpose

The use of social media is an integral part of modern life, yet the impact of social media on creativity is a paradox. Drawing on the conservation of resources theory, the authors propose that social media, as an ecological condition, both nurture and deplete resources. Accordingly, the authors investigated two inconsistent mechanisms: creative self-efficacy and ego depletion.

Design/methodology/approach

Study 1 established the within-person effects of social media use on creativity by tracking 64 college students for five working days. Using a sample of 493 employee–leader-matched dyads in a national bank, Study 2 tested the entire model. Study 3 is a follow-up experiment based on a sample of 160 participants.

Findings

The results consistently showed that: (1) social media use had a positive impact on creativity in general; (2) social media use increased ego depletion and creative self-efficacy, which were two inconsistent mediators; (3) hedonic use of social media reduced the negative impact of cognitive use of social media on ego depletion.

Originality/value

This research sheds new light on the paradox between social media use and creativity and highlights the benefits of the balanced use of social media features. This research has implications for creative stimulation and job design in digital contexts.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 5 April 2024

Heping Liu, Jinxin Lu, Fusheng Zhu and Ani Luo

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Abstract

Purpose

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Design/methodology/approach

The mathematical models and dynamic models of the D-bar dual cable (hereafter referred to as DD cable) unit of the tensegrity-based traction structure are established. Based on the minimum mass method, the mass of the DD cable unit in the critical state (cable member is yielding, or bar member is buckling or yielding) is analyzed. Then, the tensile strength of the DD cable unit and single cable unit under the same condition is compared using the control variate method. Finally, based on ANSYS dynamic simulation, the stability of the two structures under the same external force disturbance was tested.

Findings

Expressions for the minimum mass of the DD cable unit under different failure conditions are solved. Dynamic simulation results show that the capacity of resisting disturbance of the DD cable unit is much better than that of the single cable unit under the same wind speed. So, we find a structure more suitable for the fixed connection of an airship.

Originality/value

This study helps to provide theoretical reference and thinking for the practical application of the traction structure with a D-bar dual cable unit.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 March 2023

Muhammad Zeshan, Shahzil Talha Khatti, Fiza Afridi and Olivier de La Villarmois

This paper aims to show the role of employees’ self-regulation in defining the effect of job demands on employees’ burnout. Moreover, the paper also highlights the importance of a…

Abstract

Purpose

This paper aims to show the role of employees’ self-regulation in defining the effect of job demands on employees’ burnout. Moreover, the paper also highlights the importance of a high-performance work system (HPWS) on the relation between job demands and employee self-regulation.

Design/methodology/approach

Data has been collected from public sector hospital nurses through a survey strategy following a time-lagged approach. This data has been analysed to validate the measure and to test the hypotheses through structural equation modelling.

Findings

Results of this study indicate that job demands affect employees’ burnout through adaptive regulation (recovery) and maladaptive regulation (self-undermining). Adaptive regulation minimizes while maladaptive regulation supports this effect. Moreover, results also highlight the role of HPWS in mitigating the negative impact of job demands on adaptive regulation.

Practical implications

This study serves as a guide for managers to minimize the burnout of their subordinates in the face of increasing job demands. This study also emphasizes the use of HPWS in organizations so that the burnout of the employees may be decreased by increasing adaptive self-regulation or recovery.

Originality/value

This study enriches the literature on the job demand resource theory by showing how employee job demands, employee self-regulation (psychological processes) and HPWS (organizational processes) collaborate to determine the extent of job burnout of employees.

Details

International Journal of Organizational Analysis, vol. 32 no. 2
Type: Research Article
ISSN: 1934-8835

Keywords

1 – 6 of 6