Search results

1 – 10 of over 6000
Article
Publication date: 9 June 2023

Nian Zhang, Shuo Zheng, Lingyuan Tian and Guiwu Wei

In the supply chain disruption risk, the issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Abstract

Purpose

In the supply chain disruption risk, the issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Design/methodology/approach

Considering the influence of irrational emotions of decision makers, an evaluation model is designed by the regret theory and VIKOR method, which makes the decision-making process closer to reality.

Findings

The paper has some innovations in the evaluation index system and evaluation model construction. The method has good stability under the risk of supply chain interruption.

Originality/value

The mixed evaluation information is used to describe the attributes, and the evaluation index system is constructed by the combined method of the social network analysis method and the literature research method to ensure the accuracy and accuracy of the extracted attributes. The issue of supplier evaluation and selection is solved by an extended VIKOR method based on regret theory.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 12 May 2023

Hongliang Yu, Zhen Peng, Zirui He and Chun Huang

The purpose of this paper is to establish a maturity evaluation model for the application of construction steel structure welding robotics suitable for the actual situation and…

109

Abstract

Purpose

The purpose of this paper is to establish a maturity evaluation model for the application of construction steel structure welding robotics suitable for the actual situation and specific characteristics of engineering projects in China and then to assess the maturity level of the technology in the application of domestic engineering projects more scientifically.

Design/methodology/approach

The research follows a qualitative and quantitative analysis method. In the first stage, the structure of the maturity model is constructed and the evaluation index system is designed by using the ideas of the capability maturity model and WSR methodology for reference. In the second stage, the design of the evaluation process and the selection of evaluation methods (analytic hierarchy process method, multi-level gray comprehensive evaluation method). In the third stage, the data are collected and organized (preparation of questionnaires, distribution of questionnaires, questionnaire collection). In the fourth stage, the established maturity evaluation model is used to analyze the data.

Findings

The evaluation model established by using multi-level gray theory can effectively transform various complex indicators into an intuitive maturity level or score status. The conclusion shows that the application maturity of building steel structure welding robot technology in this project is at the development level as a whole. The maturity levels of “WuLi – ShiLi – RenLi” are respectively: development level, development level, between starting level and development level. Comparison of maturity evaluation values of five important factors (from high to low): environmental factors, technical factors, management factors, benefit factors, personnel and group factors.

Originality/value

In this paper, based on the existing research related to construction steel structure welding robot technology, a quantitative and holistic evaluation of the application of construction steel structure welding robot technology in domestic engineering projects is conducted for the first time from a project perspective by designing a maturity evaluation index system and establishing a maturity evaluation model. This research will help the project team to evaluate the application level (maturity) of the welding robot in the actual project, identify the shortcomings and defects of the application of this technology, then improve the weak links pertinently, and finally realize the gradual improvement of the overall application level of welding robot technology for building steel structure.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 April 2024

Minyan Wei, Juntao Zheng, Shouzhen Zeng and Yun Jin

The main aim of this paper is to establish a reasonable and scientific evaluation index system to assess the high quality and full employment (HQaFE).

23

Abstract

Purpose

The main aim of this paper is to establish a reasonable and scientific evaluation index system to assess the high quality and full employment (HQaFE).

Design/methodology/approach

This paper uses a novel Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) multi-criteria framework to evaluate the quality and quantity of employment, wherein the integrated weights of attributes are determined by the combined the Criteria Importance Through Inter-criteria Correlation (CRITIC) and entropy approaches.

Findings

Firstly, the gap in the Yangtze River Delta in employment quality is narrowing year by year; secondly, employment skills as well as employment supply and demand are the primary indicators that determine the HQaFE; finally, the evaluation scores are clearly hierarchical, in the order of Shanghai, Jiangsu, Zhejiang and Anhui.

Originality/value

A scientific and reasonable evaluation index system is constructed. A novel CRITIC-entropy-TOPSIS evaluation is proposed to make the results more objective. Some policy recommendations that can promote the achievement of HQaFE are proposed.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 20 June 2023

Yukun Hu, Suihuai Yu, Dengkai Chen, Jianjie Chu, Yanpu Yang and Qing Ao

A successful process of design concept evaluation has positive influence on subsequent processes. This study aims to consider the evaluation information at multiple stages and the…

Abstract

Purpose

A successful process of design concept evaluation has positive influence on subsequent processes. This study aims to consider the evaluation information at multiple stages and the interaction among evaluators and improve the credibility of evaluation results.

Design/methodology/approach

This paper proposes a multi-stage approach for design concept evaluation based on complex network and bounded confidence. First, a network is constructed according to the evaluation data. Depending on the consensus degree of evaluation opinions, the number of evaluation rounds is determined. Then, bounded confidence rules are applied for the modification of preference information. Last, a planning function is constructed to calculate the weight of each stage and aggregate information at multiple evaluation stages.

Findings

The results indicate that the opinions of the evaluators tend to be consistent after multiple stages of interactive adjustment, and the ordering of design concept alternatives tends to be stable with the progress of the evaluation.

Research limitations/implications

Updating preferences according to the bounded confidence rules, only the opinions within the trust threshold are considered. The attribute information of the node itself is inadequately considered.

Originality/value

This method addresses the need for considering the evaluation information at each stage and minimizes the impact of disagreements within the evaluation group on the evaluation results.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 25 August 2023

Shantanu Shantaram Apte, Abhijit Vasant Chirputkar and Abhijeet Lele

Relative performance evaluation (RPE) is a widely practiced employee appraisal process in the services industry. In a global delivery model, teams are spread across different…

Abstract

Purpose

Relative performance evaluation (RPE) is a widely practiced employee appraisal process in the services industry. In a global delivery model, teams are spread across different geographical locations. The team members work on various tasks under the guidance of different managers and at times under more than one manager for performing the same task. Such complexities make RPE of the team members quite challenging. The paper proposes a methodical step-by-step approach to simplify the evaluation process without compromising on the rigour.

Design/methodology/approach

RPE has followed three different approaches. First is the traditional way, wherein evaluators had a common meeting to discuss and arrive at relative evaluation and ranking of members of the peer group employees. In the second, the number of evaluators and employees in a peer group were split in to 2 subgroups. The evaluators provided independent ratings and rankings. Simple mathematical tool then derived the combined ranking. In the third approach, each evaluator evaluated each employee in the peer group and provided the relative ranking for each employee. Again, mathematical tools provided the final ranking considering inputs from all evaluators. All the three evaluation approaches were analysed through an inter-rater agreement method.

Findings

All the three approaches for evaluation provided similar results giving confidence that less time-consuming methods could be adopted by evaluators without compromising on the rigour of the evaluation. The outcome of the exercise proved effective as the complaints reaching the ombudsmen reduced as compared to the earlier years. Considerable evaluation time was also saved. The study described in this paper is carried out in a non-unionized, Indian private sector services firm. Its effectiveness in other set ups is yet to be tested.

Research limitations/implications

The research is carried out in the Indian Engineering services firm operating in the Knowledge based sector. Though study results are encouraging, the adaptability of methodology across different sectors and geographies is yet to be tested. More broad based studies are needed to evaluate suitability across firms and regions.

Practical implications

Relative evaluation exercise is challenging for evaluators. Although openness in evaluation is desired, it also makes evaluators uncomfortable in appearing to be taking sides or being opposing a candidate's ranking. The proposed approach brings in anonymity to each evaluator without scarifying individual evaluation.

Social implications

The proposed methodology can be deployed across different services industries as the proposed methodology is business domain agnostic. It can be easily ported and tailored to align with an individual organization's evaluation philosophy. The suitability and effectiveness of the method can be studied under various types of firms like manufacturing, private, public, NGO, labour oriented, etc. As the proposed method reduces efforts, the stake holders can focus on understanding the relation between employee performance measurement, employee engagement, and long-term outcomes related to employee performance evaluation.

Originality/value

The proposed employee evaluation method leverages inter-rater reliability and agreement tool as a consensus approach to the relative performance ranking exercise. Such an approach to relative performance ranking is original as no prior studies with such an approach are found in the existing Literature.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 9 January 2024

Ning Chen, Zhenyu Zhang and An Chen

Consequence prediction is an emerging topic in safety management concerning the severity outcome of accidents. In practical applications, it is usually implemented through…

Abstract

Purpose

Consequence prediction is an emerging topic in safety management concerning the severity outcome of accidents. In practical applications, it is usually implemented through supervised learning methods; however, the evaluation of classification results remains a challenge. The previous studies mostly adopted simplex evaluation based on empirical and quantitative assessment strategies. This paper aims to shed new light on the comprehensive evaluation and comparison of diverse classification methods through visualization, clustering and ranking techniques.

Design/methodology/approach

An empirical study is conducted using 9 state-of-the-art classification methods on a real-world data set of 653 construction accidents in China for predicting the consequence with respect to 39 carefully featured factors and accident type. The proposed comprehensive evaluation enriches the interpretation of classification results from different perspectives. Furthermore, the critical factors leading to severe construction accidents are identified by analyzing the coefficients of a logistic regression model.

Findings

This paper identifies the critical factors that significantly influence the consequence of construction accidents, which include accident type (particularly collapse), improper accident reporting and handling (E21), inadequate supervision engineers (O41), no special safety department (O11), delayed or low-quality drawings (T11), unqualified contractor (C21), schedule pressure (C11), multi-level subcontracting (C22), lacking safety examination (S22), improper operation of mechanical equipment (R11) and improper construction procedure arrangement (T21). The prediction models and findings of critical factors help make safety intervention measures in a targeted way and enhance the experience of safety professionals in the construction industry.

Research limitations/implications

The empirical study using some well-known classification methods for forecasting the consequences of construction accidents provides some evidence for the comprehensive evaluation of multiple classifiers. These techniques can be used jointly with other evaluation approaches for a comprehensive understanding of the classification algorithms. Despite the limitation of specific methods used in the study, the presented methodology can be configured with other classification methods and performance metrics and even applied to other decision-making problems such as clustering.

Originality/value

This study sheds new light on the comprehensive comparison and evaluation of classification results through visualization, clustering and ranking techniques using an empirical study of consequence prediction of construction accidents. The relevance of construction accident type is discussed with the severity of accidents. The critical factors influencing the accident consequence are identified for the sake of taking prevention measures for risk reduction. The proposed method can be applied to other decision-making tasks where the evaluation is involved as an important component.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 23 May 2023

Minggong Zhang, Xiaolong Xue, Ting Luo, Mengmeng Li and Xiaoling Tang

This study aims to establish an evaluation method for cross-regional major infrastructure project (CRMIP) supportability. The focus is to identify evaluation indicators from a…

Abstract

Purpose

This study aims to establish an evaluation method for cross-regional major infrastructure project (CRMIP) supportability. The focus is to identify evaluation indicators from a complexity perspective and develop an evaluation model using qualitative and quantitative methods. Case studies are carried out to verify the reliability of the evaluation model, thereby providing theoretical and practical guidance for CRMIP operations and maintenance (O&M).

Design/methodology/approach

Guided by the idea of complexity management, the evaluation indicators of CRMIP supportability are determined through literature analysis, actual O&M experience and expert interviews. A combination of qualitative and quantitative methods, consisting of sequential relationship analysis, entropy weighting, game theory and cloud model, is developed to determine the indicator weights. Finally, the evaluation model is used to evaluate the supportability of the Hong Kong–Zhuhai–Macao Bridge (HZMB), which tests the rationality of the model and reveals its supportability level.

Findings

The results demonstrate that CRMIPs' supportability is influenced by 6 guideline-level and 18 indicator-level indicators, and the priority of the influencing factors includes “organization,” “technology,” “system,” “human resources,” “material system,” and “funding.” As for specific indicators, “organizational objectives,” “organizational structure and synergy mechanism,” and “technical systems and procedures” are critical to CRMIPs' O&M supportability. The results also indicate that the supportability level of the HZMB falls between good and excellent.

Originality/value

Under the guidance of complexity management thinking, this study proposes a supportability evaluation framework based on the combined weights of game theory and the cloud model. This study provides a valuable reference and scientific judgment for the health and safety of CRMIPs' O&M.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 April 2024

Arash Arianpoor and Ahmad Abdollahi

The purpose of this study is to propose a framework for the convergence of maturity model and education and evaluation in accounting.

Abstract

Purpose

The purpose of this study is to propose a framework for the convergence of maturity model and education and evaluation in accounting.

Design/methodology/approach

The present research was conducted in two phases. In the first phase, to determine the indicators of convergence of the maturity model and education and evaluation in accounting, a Meta-Synthesis method was used. The conceptual model includes two dimensions of “Teaching and learning processes” and “Evaluation methods"; five levels of initial, repeatable, defined, managed and optimized; and a total number of 35 indicators. In the second phase, a questionnaire was developed, and academics as accounting faculty members in Iranian public universities were employed to fill out the questionnaire electronically and present a final framework. Having received the questionnaires, 66 questionnaires were analyzed statistically.

Findings

The results showed that the two dimensions of “Teaching and learning processes” and “Evaluation methods” considering initial, repeatable, defined, managed and optimized levels include 35 indicators, which form a framework for the convergence of maturity model and education and evaluation in accounting. The results show that both dimensions have positive and significant regression path coefficients in the convergence model. Moreover, the dimension of teaching and learning processes has the highest regression path coefficient indicating a greater impact on the convergence model. Besides, all five levels have positive and significant regression path coefficients with dimensions. Finally, in this study, all indicators were prioritized according to five levels.

Originality/value

Due to the success of maturity models and the urgent developments that require transformative improvements in accounting education, maturity models can respond to the challenges associated with education and learning in accounting. Thus, conceiving an image of the convergence of maturity model, education and evaluation in accounting seems imperative which has been scarcely investigated previously.

Details

Accounting Research Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1030-9616

Keywords

Article
Publication date: 17 October 2023

Hatzav Yoffe, Noam Raanan, Shaked Fried, Pnina Plaut and Yasha Jacob Grobman

This study uses computer-aided design to improve the ecological and environmental sustainability of early-stage landscape designs. Urban expansion on open land and natural…

Abstract

Purpose

This study uses computer-aided design to improve the ecological and environmental sustainability of early-stage landscape designs. Urban expansion on open land and natural habitats has led to a decline in biodiversity and increased climate change impacts, affecting urban inhabitants' quality of life and well-being. While sustainability indicators have been employed to assess the performance of buildings and neighbourhoods, landscape designs' ecological and environmental sustainability has received comparatively less attention, particularly in early-design stages where applying sustainability approaches is impactful.

Design/methodology/approach

The authors propose a computation framework for evaluating key landscape sustainability indicators and providing real-time feedback to designers. The method integrates spatial indicators with widely recognized sustainability rating system credits. A specialized tool was developed for measuring biomass optimization, precipitation management and urban heat mitigation, and a proof-of-concept experiment tested the tool's effectiveness on three Mediterranean neighbourhood-level designs.

Findings

The results show a clear connection between the applied design strategy to the indicator behaviour. This connection enhances the ability to establish sustainability benchmarks for different types of landscape developments using parametric design.

Practical implications

The study allows non-expert designers to measure and embed landscape sustainability early in the design stages, thus lowering the entry level for incorporating biodiversity enhancement and climate mitigation approaches.

Originality/value

This study expands the parametric vocabulary for measuring landscape sustainability by introducing spatial ecosystem services and architectural sustainability indicators on a unified platform, enabling the integration of critical climate and biodiversity-loss solutions earlier in the development process.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 15 March 2024

Lin Sun, Chunxia Yu, Jing Li, Qi Yuan and Shaoqiong Zhao

The paper aims to propose an innovative two-stage decision model to address the sustainable-resilient supplier selection and order allocation (SSOA) problem in the single-valued…

Abstract

Purpose

The paper aims to propose an innovative two-stage decision model to address the sustainable-resilient supplier selection and order allocation (SSOA) problem in the single-valued neutrosophic (SVN) environment.

Design/methodology/approach

First, the sustainable and resilient performances of suppliers are evaluated by the proposed integrated SVN-base-criterion method (BCM)-an acronym in Portuguese of interactive and multi-criteria decision-making (TODIM) method, with consideration of the uncertainty in the decision-making process. Then, a novel multi-objective optimization model is formulated, and the best sustainable-resilient order allocation solution is found using the U-NSGA-III algorithm and TOPSIS method. Finally, based on a real-life case in the automotive manufacturing industry, experiments are conducted to demonstrate the application of the proposed two-stage decision model.

Findings

The paper provides an effective decision tool for the SSOA process in an uncertain environment. The proposed SVN-BCM-TODIM approach can effectively handle the uncertainties from the decision-maker’s confidence degree and incomplete decision information and evaluate suppliers’ performance in different dimensions while avoiding the compensatory effect between criteria. Moreover, the proposed order allocation model proposes an original way to improve sustainable-resilient procurement values.

Originality/value

The paper provides a supplier selection process that can effectively integrate sustainability and resilience evaluation in an uncertain environment and develops a sustainable-resilient procurement optimization model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 6000