Search results

1 – 10 of 409
Article
Publication date: 15 May 2018

Osama A.B. Hassan and Christopher Johansson

This paper aims to compare glued laminated timber and steel beams with respect to structural design, manufacturing and assembly costs and the amount of greenhouse gas emissions.

1334

Abstract

Purpose

This paper aims to compare glued laminated timber and steel beams with respect to structural design, manufacturing and assembly costs and the amount of greenhouse gas emissions.

Design/methodology/approach

This paper presents structural design requirements in conformance with EN 1993: Eurocode 5 and Eurocode 3. With the help of these standards, expressions are derived to evaluate the design criteria of the beams. Based on the results of life-cycle analysis, the economic properties and environmental impact of the two types of beam are investigated. In this paper, the effect of beam span on the design values, costs and carbon dioxide emissions is analysed when investigating aspects of the structural design, economy and environmental impact. Different cross-sections are chosen for this purpose.

Findings

The study shows that the glued laminated (abbreviated as “glulam”) beams have a smaller tendency to lateral torsional buckling than the steel beams, and that they can be cheaper. From an environmental point of view, glulam beams are the more environmentally friendly option of the two beam materials. Furthermore, glulam beams may have a direct positive effect on the environment, considering the carbon storage capacity of the wood. The disadvantage of glued wood is that larger dimensions are sometimes required.

Research limitations/implications

Wind load and the effect of second-order effects have not been considered when analysing the static design. Only straight beams have been studied. Furthermore, the dynamic design of the beams has not been investigated, and the bearing pressure capacity of the supports has not been analyzed. We have investigated timber beams with a rectangular cross-section, and steel beams of rolled I-sections, known as “HEA profiles”. The cost analysis is based mainly on the manufacturing and assembly costs prevalent on the Swedish market. The only environmental impact investigated has been the emission of greenhouse gases. The design calculations are based on the European standards Eurocode 5 and Eurocode 3.

Practical implications

To achieve sustainability in construction engineering, it is important to study the environmental and economic consequences of the building elements. By combining these two effects with the technical design of buildings made of steel and/or timber, the concept of sustainable development can be achieved in the long run.

Social implications

The study concerns sustainability of building structures, which is an important of the sustainable development of the society.

Originality/value

The paper contains new information and will be useful to researchers and civil engineers.

Details

Journal of Engineering, Design and Technology, vol. 16 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 18 April 2018

Hitoshi Kinjo, Yusuke Katakura, Takeo Hirashima, Shuitsu Yusa and Kiyoshi Saito

This paper aims to discuss the fire performance of glulam timber beams based on their deflection behavior and load-bearing period, which were obtained from load-bearing fire tests…

Abstract

Purpose

This paper aims to discuss the fire performance of glulam timber beams based on their deflection behavior and load-bearing period, which were obtained from load-bearing fire tests under constant load conditions.

Design/methodology/approach

In this report, the fire performance, primarily deflection behavior and load-bearing period of glued laminated (glulam) timber beams will be discussed from the standpoint of load-bearing fire tests conducted during the cooling phase under constant load conditions. Then, based on the charring depth and the per section temperature transformation obtained from loading test results, the load-bearing capacity of the glulam timber beams will be discussed using the effective section method and the strength reduction factor, which will be calculated in accordance with the European standards for the design of timber structures (Eurocode 5).

Findings

In the cooling phase, the charring rate is decreases. However, as the temperature in the cross section rises, the deflection is increases. The failure mode was bending failure because of tensile failure of the lamina at the bottom of the beam. Moreover, a gap caused by shear failure in a growth ring in the beam cross-section in the vicinity of the centroid axis was observed. Shear failure was observed up until 1 to 3 h before end of heating. The calculated shear strength far exceeded the test results. Shear strength for elevated temperature of glued laminated timber is likely to decrease than the shear strength in Eurocode 5.

Originality/value

Unlike other elements, a characteristic problem of timber elements is that their load-bearing capacity decreases as they are consumed in a fire, and their bearing capacities may continue to degrade even after the fuel in the room has been exhausted. Therefore, the structural fire performance of timber elements should be clarified during not only the heating phase but also the subsequent cooling phase. However, there are few reports on the load-bearing capacity of timber elements that take the cooling phase after a fire into consideration.

Details

Journal of Structural Fire Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 15 June 2022

Mohamed A. Shaheen, Lee S. Cunningham and Andrew S.J. Foster

The effect of bolt stripping failure on the ductility of steel end plate beam-column connections has received relatively little investigation to date. The objective with the…

Abstract

Purpose

The effect of bolt stripping failure on the ductility of steel end plate beam-column connections has received relatively little investigation to date. The objective with the present work is to establish a validated numerical model of end plate connections at elevated temperatures, which predicts the mechanical behaviour and failure modes observed in the experimental tests including the bolt stripping failure. Furthermore, the validated FE model was used to investigate the effect of stripping failure on both the rotational and load-bearing capacity of end plate connection.

Design/methodology/approach

The analysis was conducted on a validated numerical model of end plate connections at elevated temperatures, which predicts the mechanical behaviour and failure modes observed in the experimental tests including the bolt stripping failure. The material was modelled considering ductile damage initiation and evolution featured in ABAQUS/Standard.

Findings

This study demonstrates that thick end plates can prevent stripping failure which significantly improves the rotational capacity of the connection. This failure mode can develop readily with thin end plates; however the effect is often unrealistically mitigated through idealised experimental tests. The rotational capacity of a connection can be 5.0 times higher if stripping failure is avoided, particularly at elevated temperatures. Eurocode 3 part 1.8 does not consider the possibility of stripping failure when discussing the requirements for plastic analysis. It is concluded in the present study that by allowing for the possibility of bolt stripping, the mode of failure can often shift from end plate failure to bolt stripping, this in turn significantly reduces the connection rotational capacity.

Originality/value

The effect of bolt stripping failure on the ductility of steel end plate beam-column connections has received relatively little investigation to date.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 2 December 2019

Andrei Kervalishvili and Ivar Talvik

This paper aims to reliability analysis of axially loaded steel columns at elevated temperatures considering the probabilistic features of fire.

Abstract

Purpose

This paper aims to reliability analysis of axially loaded steel columns at elevated temperatures considering the probabilistic features of fire.

Design/methodology/approach

The response function used in the reliability analysis is based on the non-linear FEM calculations. The stochastic variability of temperature is integrated with the procedure similar to the parameters of loading and material properties. Direct Monte Carlo simulations (MCSs) are implemented for probabilistic analysis. Computational costs are reduced by polynomial approximation of the response function of the column.

Findings

A design method for practical applications in the common Eurocode format is proposed. The proposed method can be used to estimate the failure probability of a steel column in fire conditions. If standard reliability criteria are applied, the results of the steel column buckling capacity in the fire according to the proposed procedure deviate from the Eurocode results in certain parameter ranges.

Originality/value

The proposed method for design calculations makes use of the advantages of MCS results, while the need for the tedious amount of calculations for the end user are avoided as the predefined factors are implemented in the procedure of Eurocode format. The proposed method allows better differentiation of the fire probability in the capacity assessment compared to the existing design methods.

Details

Journal of Structural Fire Engineering, vol. 11 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 December 2016

Flávio Arrais, Nuno Lopes and Paulo Vila Real

Steel beams composed of cold-formed sections are common in buildings because of their lightness and ability to support large spans. However, the instability phenomena associated…

Abstract

Purpose

Steel beams composed of cold-formed sections are common in buildings because of their lightness and ability to support large spans. However, the instability phenomena associated to these members are not completely understood in fire situation. Thus, the purpose of this study is to analyse the behaviour of beams composed of cold-formed lipped channel sections at elevated temperatures.

Design/methodology/approach

A numerical analysis is made, applying the finite element program SAFIR, on the behaviour of simply supported cold formed steel beams at elevated temperatures. A parametric study, considering several cross-sections with different slenderness’s values, steel grades and bending diagrams, is presented. The obtained numerical results are compared with the design bending resistances determined from Eurocode 3 Part 1-2 and its French National Annex (FN Annex).

Findings

The current design expressions revealed to be too conservative when compared with the obtained numerical results. It was possible to observe that the FN Annex is less conservative than the Annex E, the first having a better agreement with the numerical results.

Originality/value

Following the previous comparisons, new fire design formulae are tested. This new methodology, which introduces minimum changes in the existing formulae, provides safety and accuracy at the same time when compared to the numerical results, considering the occurrence of local, distortional and lateral torsional buckling phenomena in these members at elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. 7 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 June 2017

Jean-Christophe Mindeguia, Guillaume Cueff, Virginie Dréan and Gildas Auguin

The fire resistance of wooden structures is commonly based on the calculation or measurement of the char layer. Designers usually estimate the char layer at the surface of a…

Abstract

Purpose

The fire resistance of wooden structures is commonly based on the calculation or measurement of the char layer. Designers usually estimate the char layer at the surface of a structural element by using analytical models. Some of these charring models can be found in regulations, as Eurocode 5. These analytical models, quite simple to use, are only reliable for the standard fire curve. In that case, the design of the structure is qualified as “prescriptive-based design” and can lead to oversizing the structure. Optimization of a structure can be achieved by using a “Performance-based design”, where realistic fire scenarios are taken into account by means of more or less complex models [parametric fires, two-zones models, computational fluid dynamics (CFD)]. For these so-called “natural fires”, no model for charring is available. The purpose of this paper is to present a novel methodology for applying a performance-based design to a simple timber structure.

Design/methodology/approach

This paper presents the development of a numerical model aiming to simulate the thermal transfer and charring in wood, under any type of thermal exposure, including non-standard fire curves. After presenting the physical background, the model is calibrated and compared to existing experimental studies on wood samples exposed to different fire curves. The model is then used as a tool for assessing the fire resistance of a common wooden structure exposed to standard and non-standard fire curves.

Findings

The results show that the fire resistance is obviously dependent on the choice of the thermal exposure. The reliability of the model is also discussed and the importance of taking into account particular reactions in wood during heating is underlined.

Originality/value

One aim of this paper is to show the opportunity to apply a performance-based approach when designing a wooden structure. It shows that more knowledge of the material behaviour under non-standard fires is still needed, especially during the decay phase.

Details

Journal of Structural Fire Engineering, vol. 9 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 February 1990

George Atkinson

Outlines the implications of the EC Directive on ConstructionProducts brought into operation in June 1981, with special attention toits implications for design practitioners…

Abstract

Outlines the implications of the EC Directive on Construction Products brought into operation in June 1981, with special attention to its implications for design practitioners. Refers to essential requirements for safety, health, etc., the status of Eurocodes, European Standards and the EC Conformity Mark, European Technical Approvals and the effects of different national traditions in building regulation. Discusses the short‐and‐long term implications for those working in the private sector and on public work.

Details

Structural Survey, vol. 8 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 14 November 2017

Mattia Tiso and Alar Just

Insulation materials’ contribution to the fire resistance of timber frame assemblies may vary considerably. At present, Eurocode 5 provides a model for fire design of the…

Abstract

Purpose

Insulation materials’ contribution to the fire resistance of timber frame assemblies may vary considerably. At present, Eurocode 5 provides a model for fire design of the load-bearing function of timber frame assemblies with cavities completely filled with stone wool. Very little is known about the fire protection provided by other insulation materials. An improved design model which has the potential to consider the contribution of any insulation material has been introduced by the authors. This paper aims to analyze the parameters that describe in a universal way the protection against the charring given by different insulations not included in Eurocode 5.

Design/methodology/approach

A series of model-scale furnace tests of floor specimens for three different insulation materials were carried out. An analysis on the charring depth of the residual cross-sections was conducted by means of a resistograph device.

Findings

The study explains the criteria and procedure followed to derive the coefficients for the improved design model for three insulations involved in the study.

Originality/value

This research study involves a large experimental work which forms the basis of the proposed design model. This study presents an important step for fire resistance calculations of timber frame assemblies.

Details

Journal of Structural Fire Engineering, vol. 9 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 June 2016

Xuhong Qiang, Xu Jiang, Frans Bijlaard and Henk Kolstein

This paper aims to investigate and assess a perspective of combining high-strength-steel endplate with mild-steel beam and column in endplate connections.

Abstract

Purpose

This paper aims to investigate and assess a perspective of combining high-strength-steel endplate with mild-steel beam and column in endplate connections.

Design/methodology/approach

First, experimental tests on high strength steel endplate connections were conducted at fire temperature 550°C and at an ambient temperature for reference.

Findings

The moment-rotation characteristic, rotation capacity and failure mode of high-strength-steel endplate connections in fire and at an ambient temperature were obtained through tests and compared with those of mild-steel endplate connections. Further, the provisions of Eurocode 3 were validated with test results. Moreover, the numerical study was carried out via ABAQUS and verified against the experimental results.

Originality/value

It is found that a thinner high-strength-steel endplate can enhance the connection’s rotation capacity both at an ambient temperature and in fire (which guarantees the safety of an entire structure) and simultaneously achieve almost the same moment resistance with a mild steel endplate connection.

Details

Journal of Structural Fire Engineering, vol. 7 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 August 2021

Amit Chandra, Anjan Bhowmick and Ashutosh Bagchi

The study investigates the performance of a three-story unprotected steel moment-resisting frame (SMRF) designed for high seismic demand in the fire-only (FO) and post-earthquake…

Abstract

Purpose

The study investigates the performance of a three-story unprotected steel moment-resisting frame (SMRF) designed for high seismic demand in the fire-only (FO) and post-earthquake uniform and traveling fires (PEF). The primary objective is to investigate the effects of seismic residual deformation on the structure's performance in horizontally traveling fires. The traveling fire methodology, unlike conventional fire models, considers a spatially varying temperature environment.

Design/methodology/approach

Multi-step finite element simulations were carried out on undamaged and damaged frames to provide insight into the effects of the earthquake-initiated fires on the local and global behavior of SMRF. The earthquake simulations were conducted using nonlinear time history analysis, whereas the structure in the fire was investigated by sequential thermal-structural analysis procedure in ABAQUS. The frame was subjected to a suite of seven ground motions. In total, four horizontal traveling fire sizes were considered along with the Eurocode (EC) parametric fire for a comparison. The deformation history, axial force and moment variation in the critical beams and columns of affected compartments in the fire heating and cooling regimes were examined. The global structural performance in terms of inter-story drifts in FO and PEF scenarios was investigated.

Findings

It was observed that the larger traveling fires (25 and 48%) are more detrimental to the case study frame than the uniform EC parametric fire. Besides, no appreciable difference was observed in time and modes of failure of the structure in FO and PEF scenarios within the study's parameters.

Originality/value

The present study considers improved traveling fire methodology as an alternate design fire for the first time for the PEF performance of SMRF. The analysis results add to the much needed database on structures' performance in a wide range of fire scenarios.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 409