Search results

11 – 20 of over 2000
Article
Publication date: 1 July 1985

L. Vegh

A considerable reduction of threshold limit values for ethylene glycol methyl and ethyl ethers and their acetates has been proposed by the ACGIH (American Conference of…

Abstract

A considerable reduction of threshold limit values for ethylene glycol methyl and ethyl ethers and their acetates has been proposed by the ACGIH (American Conference of Governmental Industrial Hygienists). Interest in propylene glycol ethers, as potential replacements for the traditional monoethylene glycol ethers is steadily growing because of toxicity, labelling and industrial hygiene reasons. Propylene glycol ethers are compared to ethylene glycol ethers. Evaporation and solubility performances are discussed. Substitution possibilities for ethylene glycol ethers are elaborated for solvent and water borne coating systems.

Details

Pigment & Resin Technology, vol. 14 no. 7
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 26 May 2022

Rashmi Agrawal and Pradeep Kaswan

This paper aims to examine the squeezing flow of hybrid nanofluid within the two parallel disks. The 50:50% water–ethylene glycol mixture is used as a base fluid to prepare…

Abstract

Purpose

This paper aims to examine the squeezing flow of hybrid nanofluid within the two parallel disks. The 50:50% water–ethylene glycol mixture is used as a base fluid to prepare Ag–Fe_3O_4 hybrid nanofluid. Entropy generation analysis is examined by using the second law of thermodynamics, and Darcy’s modal involves estimating the behavior of a porous medium. The influences of Viscous dissipation, Joule heating and thermal radiation in modeling are further exerted into concern.

Design/methodology/approach

For converting partial differential systems to ordinary systems, a transformation technique is used. For the validation part, the numerical solution is computed by embracing a fourth-order exactness program (bvp4c) and compared with the analytical solution added by the homotopy analysis method (HAM). Graphical decisions expose the values of miscellaneous-arising parameters on the velocity, temperature and local-Nusselt numbers.

Findings

Hybrid nanofluid gives significant enhancement in the rate of heat transfer compared with nanofluid. The outcomes indicate that the average Nusselt number and entropy generation are increasing functions of the magnetic field, porosity and Brinkman number. When the thermal radiation rises, the average Nusselt number diminishes and the entropy generation advances. Furthermore, combining silver and magnetite nanoparticles into the water–ethylene glycol base fluid significantly enhances entropy generation performance.

Originality/value

Entropy generation analysis of the magneto-hydrodynamics (MHD) fluid squeezed between two parallel disks by considering Joule heating, viscous dissipation and thermal radiation for different nanoparticles is addressed. Furthermore, an appropriate agreement is obtained in comparing the numerical results with previously published and analytical results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1982

Vinyl Products Ltd. (a wholly‐owned subsidiary of Unilever PLC) last month commissioned Europe's largest pressure polymerisation reactor for the manufacture of vinyl acetate…

Abstract

Vinyl Products Ltd. (a wholly‐owned subsidiary of Unilever PLC) last month commissioned Europe's largest pressure polymerisation reactor for the manufacture of vinyl acetate‐ethylene and vinyl acetate‐vinyl chloride‐ethylene copolymer emulsions at its Warrington factory.

Details

Pigment & Resin Technology, vol. 11 no. 3
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 16 January 2017

Jinyi Li, Zhenhui Du, Zheyuan Zhang, Limei Song and Qinghua Guo

This paper aims to provide a sensor for fast, sensitive and selective ethylene (C2H4) concentration measurements.

Abstract

Purpose

This paper aims to provide a sensor for fast, sensitive and selective ethylene (C2H4) concentration measurements.

Design/methodology/approach

The paper developed a sensor platform based on tunable laser absorption spectroscopy with a 3,266-nm interband cascade laser (ICL) as an optical source and a hollow waveguide (HWG) as a gas cell. The ICL wavelength was scanned across a C2H4 strong fundamental absorption band, and an interference-free C2H4 absorption line located at 3,060.76 cm−1 was selected. Wavelength modulation spectroscopy with the second harmonic detection (WMS-2f) technique was used to improve the sensitivity. Furthermore, the HWG gas cell can achieve a long optical path in a very small volume to improve the time response.

Findings

The results show excellent linearity of the measured 2f signal and the C2H4 concentration with a correlation coefficient of 0.9997. Also, the response time is as short as about 10 s. The Allan variance analysis indicates that the detection limit can achieve 53 ppb with an integration time of 24 s.

Practical implications

The ethylene sensor has many meaningful applications in environmental monitoring, industrial production, national security and the biomedicine field.

Originality/value

The paper provides a novel sensor architecture which can be a versatile sensor platform for fast and sensitive trace-gas detection in the mid-infrared region.

Details

Sensor Review, vol. 37 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 1992

Edgar S. Lower

Adhesion promoters: Some oleochemicals can promote the adhesion of polymers to various surfaces, e.g. stearic acid can increase the adhesion of polyolef ins to metals and to the…

Abstract

Adhesion promoters: Some oleochemicals can promote the adhesion of polymers to various surfaces, e.g. stearic acid can increase the adhesion of polyolef ins to metals and to the surfaces of other polymers. Erucamide is effective in the lamination of cellophane to polyethylene films, and alumina‐modified iron stearate has been found effective in aiding the adhesion of polyethylene to steel surfaces. The effect of oleamide on the adhesion of polyethylene to aluminium and to nylon 6 has been studied. Stearic acid had an adhesion promoting role in polyethylene/aluminium laminated packaging film. Barium stearate can effect the adhesiveness of poly(vinyl chloride).

Details

Pigment & Resin Technology, vol. 21 no. 3
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 27 June 2020

N. Mahato, S.M. Banerjee, R.N. Jana and S. Das

The article focuses on the magnetohydrodynamic (MHD) convective flow of MoS2-SiO2 /ethylene glycol (EG) hybrid nanofluid. The effectiveness of Hall current, periodically heating…

Abstract

Purpose

The article focuses on the magnetohydrodynamic (MHD) convective flow of MoS2-SiO2 /ethylene glycol (EG) hybrid nanofluid. The effectiveness of Hall current, periodically heating wall and shape factor of nanoparticles on the magnetized flow of hybrid nanocomposite molybdenum disulfide- silicon dioxide (MoS2-SiO2) suspended in ethylene glycol (EG) in a vertical rotating channel under the influence of strong magnetic dipole (Hall effect) and thermal radiation is assessed. One of the channel walls has an oscillatory temperature gradient. Four different shapes (i.e. brick, cylinder, platelet and blade) of nanoparticles disseminated in base fluid (EG) are considered for simulation of the flow.

Design/methodology/approach

The analytical solution of governing equations has been presented. Influences of emerging physical parameters on the velocity and temperature profiles, the shear stresses and the rate of heat transfer are pointed out and discussed via graphs and tables.

Findings

The analysis revealed that Hall parameter has suppressing behavior on the velocity profiles within the rotating channel. The impact of nanoparticle shape factor advances the temperature characteristics significantly in the rotating channel. Brick-shape nanoparticles put up relatively low-temperature distribution in the rotating channel. The Hall parameter reduces the amplitudes of the shear stresses at the channel wall. However, the radiation parameter enhances the amplitude of the rate of heat transfer at the channel wall.

Social implications

The important technical advantage of hybrid composition of nanoparticles as a drug carrier is its stability, high thermal conductivity, high load carrying capacity, etc. The proposed model may be beneficial in biomedical engineering, automobile parts, mineral and cleaning oils manufacturing, rubber and plastic industries.

Originality/value

To the best of our knowledge, there is little or no report on the aspects of assessment of the effectiveness of Hall current and nanoparticle shape factor on an MHD flow and heat transfer of an electrically conducting MoS2-SiO2/EG ethylene glycol-based hybrid nanofluid confined in a vertical channel with periodically varying wall temperature subject to a rotating frame. The present work furnishes a robust benchmark for the dynamics of nanofluids.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2000

A.A. Taha

The rate of copper dissolution in the presence of phosphoric acid‐alcohol mixtures was studied by measuring the limiting current density which represents that the rate of…

1459

Abstract

The rate of copper dissolution in the presence of phosphoric acid‐alcohol mixtures was studied by measuring the limiting current density which represents that the rate of electropolishing is decreased by increasing phosphoric acid concentration, electrode height, and mole fraction of alcohol. Thermodynamic parameters are calculated. The rotating disk electrode is being used as a tool to study the influence of organic solvent addition on the rate of electropolishing of copper. Different reaction conditions such as temperature, speed of rotation of copper disk, the physical properties of solution are studied to obtain a dimensionless correlation between all these parameters. The data can be correlated by the following equations: Sh = 1.835 (Sc)0.33 (Re)0.36 (for ethylene glycol) Sh = 1.25 (Sc)0.33 (Re)0.5 (for glycerol) It is obvious that the exponent in the two cases denotes a laminar flow mechanism.

Details

Anti-Corrosion Methods and Materials, vol. 47 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Executive summary
Publication date: 19 February 2016

MEXICO: Ethylene XXI could spur plastics investment

Article
Publication date: 15 August 2019

Davood Toghraie, Maboud Hekmatifar and Niyusha Adavoodi Jolfaei

This paper aims to investigate the three-dimensional (3D) numerical simulations, based on the Navier–Stokes equations and the energy equation. Forced convection of a mixture of…

Abstract

Purpose

This paper aims to investigate the three-dimensional (3D) numerical simulations, based on the Navier–Stokes equations and the energy equation. Forced convection of a mixture of (60:40) percent ethylene glycol and water, was used as the base fluid and CuO nanoparticles, through a serpentine minichannel.

Design/methodology/approach

In this simulation, a serpentine mini-channel heat exchanger was simulated. The fluid studied in this simulation was composed of a mixture of (60:40) per cent ethylene glycol and water, was used as the base fluid and CuO nanoparticles. Four slabs and three serpentines were used in this study. The serpentine section is connected to the slab. Three equidistant circular channels (1 mm in diameter) were implemented inside the slab.

Findings

Results show that nanoparticles increase the fluid pressure drop and by changing volume fraction of nanoparticles from 0 to 1 per cent, the pressure drop of nanofluids increases between 42and 47 per cent, for Reynolds numbers from 100 to 500. The existence of serpentine bend in the minichannel heat exchanger causes the heat transfer rate to increase. Increase the volume fraction of nanoparticles reduces the fluid temperature at the outlet of the heat exchanger. The numerical results show that in Re = 500, at the beginning of the last slab in middle channel by changing volume fraction of nanoparticles from 0 to 2 per cent, local Nusselt number 57.40 per cent increase. The existence of the serpentine bend causes the heat transfer rate to increase.

Originality/value

Forced convection of a mixture of (60:40) per cent ethylene glycol and water by using of 3D numerical simulations, based on the Navier–Stokes equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 February 2021

Abbas Ahmad Adamu, Norazilawati Muhamad Sarih and Seng Neon Gan

Poly(ethylene terephthalate) (PET) waste from soft drink bottles was incorporated into palm olein alkyd to produce new polyol for use in polyurethane resins as surface protection…

Abstract

Purpose

Poly(ethylene terephthalate) (PET) waste from soft drink bottles was incorporated into palm olein alkyd to produce new polyol for use in polyurethane resins as surface protection on metal surfaces.

Design/methodology/approach

Alkyd was prepared from palm olein, glycerol and phthalic anhydride. PET underwent simultaneous glycolysis and transesterification reactions with the alkyd. Varying the amount of PET has led to polyols with different viscosities. Polyurethane resins were produced by reacting the polyols with toluene diisocyanate. The resins were coated on mild steel panels and cured. Performances of the cured films were tested.

Findings

The polyurethanes (PU) resin cured to a harder film with better thermal stability. Films showed excellent adhesion properties, while higher content of PET exhibited higher pencil hardness, better water, salt, acid and alkali resistance.

Research limitations/implications

Other vegetable oils could also be used. The alkyd structure could be changed by formulation to have different functionality and the ability to incorporate higher amount of PET waste. Rate of glycolysis of PET could be increased by higher amount of ethylene glycol.

Practical implications

This method has managed to use waste PET in producing new polyol and PU resins. The cured films exhibit good mechanical and chemical properties, as well as excellent adhesion and thermal stability.

Social implications

The non-biodegradable PET has created environmental pollution problems connected to littering and illegal landfilling. It has become necessary to pay greater attention to recycling PET bottles for obtaining valuable products.

Originality/value

This approach is different from the earlier reports, where PET was recycled to recover the raw materials.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

11 – 20 of over 2000