Search results

1 – 10 of 156
Article
Publication date: 7 February 2024

Paul O. Ukachi, Mathias Ekpu, Sunday C. Ikpeseni and Samuel O. Sada

The purpose of this study is to assess the performance of fuel blends containing ethanol and gasoline in spark ignition engines. The aim is to explore alternative fuels that can…

Abstract

Purpose

The purpose of this study is to assess the performance of fuel blends containing ethanol and gasoline in spark ignition engines. The aim is to explore alternative fuels that can enhance performance while minimizing or eliminating adverse environmental impacts, particularly in the context of limited fossil fuel availability and the need for sustainable alternatives.

Design/methodology/approach

The authors used the Ricardo Wave software to evaluate the performance of fuel blends with varying ethanol content (represented as E0, E10, E25, E40, E55, E70, E85 and E100) in comparison to gasoline. The assessment involved different composition percentages and was conducted at various engine speeds (1,500, 3,000, 4,500 and 6,000 rpm). This methodology aims to provide a comprehensive understanding of how different ethanol-gasoline blends perform under different conditions.

Findings

The study found that, across all fuel blends, the highest brake power (BP) and the highest brake-specific fuel consumption (BSFC) were observed at 6,000 rpm. Additionally, it was noted that the presence of ethanol in gasoline fuel blends has the potential to increase both the BP and BSFC. These findings suggest that ethanol can positively impact the performance of spark-ignition engines, highlighting its potential as an alternative fuel.

Originality/value

This research contributes to the ongoing efforts in the automotive industry to find sustainable alternative fuels. The use of Ricardo Wave software for performance assessment and the comprehensive exploration of various ethanol-gasoline blends at different engine speeds add to the originality of the study. The emphasis on the potential of ethanol to enhance engine performance provides valuable insights for motor vehicle manufacturers and researchers working on alternative fuel solutions.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 11 January 2024

Adewale Allen Sokan-Adeaga, Godson R.E.E. Ana, Abel Olajide Olorunnisola, Micheal Ayodeji Sokan-Adeaga, Hridoy Roy, Md Sumon Reza and Md. Shahinoor Islam

This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.

Abstract

Purpose

This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.

Design/methodology/approach

The milled CP was divided into three treatment groups in a small-scale flask experiment where each 20 g CP was subjected to two-stage hydrolysis. Different amount of water was added to the fermentation process of CP. The fermented samples were collected every 24 h for various analyses.

Findings

The results of the fermentation revealed that the highest ethanol productivity and fermentation efficiency was obtained at 17.38 ± 0.30% and 0.139 ± 0.003 gL−1 h−1. The study affirmed that ethanol production was increased for the addition of water up to 35% for the CP hydrolysate process.

Practical implications

The finding of this study demonstrates that S. cerevisiae is the key player in industrial ethanol production among a variety of yeasts that produce ethanol through sugar fermentation. In order to design truly sustainable processes, it should be expanded to include a thorough analysis and the gradual scaling-up of this process to an industrial level.

Originality/value

This paper is an original research work dealing with bioethanol production from CP using S. cerevisiae microbe.

Highlights

  1. Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity

  2. Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae

  3. Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation

  4. Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1

Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity

Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae

Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation

Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 20 February 2024

Shaimaa Hadi Al-Dulaimi and Miyada Kh Hassan

This study was design to investigate of P. aeruginosa, an example of Gram-negative bacteria, in seven primary and secondary schools of Baghdad city, and the effects of Ethanol and…

Abstract

Purpose

This study was design to investigate of P. aeruginosa, an example of Gram-negative bacteria, in seven primary and secondary schools of Baghdad city, and the effects of Ethanol and Dettol of P. aeruginosa biofilm.

Design/methodology/approach

Seventy swabs were collected from seven primary and secondary schools of Baghdad city, Iraq, during November -December 2022. Swabs were collected from classes desk, doors handles, students hands and water taps. Standard microbiological testing methods were used on the samples for isolation and identification. The ability of bacteria to form biofilm and the effects of Ethanol and Dettol on"preformed” biofilms was examined by microtiter plate with the use of an ELISA reader.

Findings

In 70 swabs from seven primary and secondary schools, growth was observed in 33 swabs as P. aeruginosa. Primary schools were higher contaminated than secondary and water taps and door handles represented the main source of this contamination. The ability of bacteria to produce biofilm was observed in 19 (57.6%) isolates and 14 (42.4%) nonbiofilm producers. As well as, Ethanol (70%) treatment of preformed biofilms led to enhance biofilm formation and revealed significantly greater staining after 4 and 24h than Dettol (3%) compared to an untreated control (tryptic soy broth (TSB) incubation).

Originality/value

Studies on P. aeruginosa in Iraqi schools are quite rare. This work is considered distinctive because it drew attention to the presence of pathogenic bacteria within primary and secondary schools, which are not considered their natural environment.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Book part
Publication date: 14 December 2023

Nausheen Bibi Jaffur, Pratima Jeetah and Gopalakrishnan Kumar

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental…

Abstract

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental concerns and prompted the search for environmentally friendly alternatives. Biodegradable plastics derived from lignocellulosic materials are emerging as substitutes for synthetic plastics, offering significant potential to reduce landfill stress and minimise environmental impacts. This study highlights a sustainable and cost-effective solution by utilising agricultural residues and invasive plant materials as carbon substrates for the production of biopolymers, particularly polyhydroxybutyrate (PHB), through microbiological processes. Locally sourced residual materials were preferred to reduce transportation costs and ensure accessibility. The selection of suitable residue streams was based on various criteria, including strength properties, cellulose content, low ash and lignin content, affordability, non-toxicity, biocompatibility, shelf-life, mechanical and physical properties, short maturation period, antibacterial properties and compatibility with global food security. Life cycle assessments confirm that PHB dramatically lowers CO2 emissions compared to traditional plastics, while the growing use of lignocellulosic biomass in biopolymeric applications offers renewable and readily available resources. Governments worldwide are increasingly inclined to develop comprehensive bioeconomy policies and specialised bioplastics initiatives, driven by customer acceptability and the rising demand for environmentally friendly solutions. The implications of climate change, price volatility in fossil materials, and the imperative to reduce dependence on fossil resources further contribute to the desirability of biopolymers. The study involves fermentation, turbidity measurements, extraction and purification of PHB, and the manufacturing and testing of composite biopolymers using various physical, mechanical and chemical tests.

Details

Innovation, Social Responsibility and Sustainability
Type: Book
ISBN: 978-1-83797-462-7

Keywords

Article
Publication date: 30 September 2022

Marcelo Cordeiro, Francisco Puig and Lorena Ruiz-Fernández

This paper aims to shed light on the mechanisms that connect dynamic capabilities and organizational knowledge in the innovative process to offer a new theoretical and practical…

Abstract

Purpose

This paper aims to shed light on the mechanisms that connect dynamic capabilities and organizational knowledge in the innovative process to offer a new theoretical and practical solution considering the microfoundations of knowledge management strategies.

Design/methodology/approach

This research has emerged from an in-depth case study of an effective innovation (from just ethanol and sugar-production to an effective biomass plant). The study represents an “inductive inquiry,” useful to understand specific “organizational mechanisms” of innovation, where the main data came from in-depth interviews with 18 key actors. It proved to help search the development of a specific biomass plant, designed and implemented between 2000 and 2007 in a Brazilian ethanol and sugar-production large company, referred to here as “Energyplant.”

Findings

This solution provides a new perspective based on the idea that dynamic capabilities are context-dependent and presents an original typological map that shows and materializes dynamic capabilities as teams of human-based resources. Managerial implications can be drawn from the capabilities typological map highlighting that, although identical dynamic capabilities are not required to change different firms, idiosyncratic dynamic capabilities perform universal knowledge functions that can be mapped, contributing to the planning of a specific innovation.

Originality/value

While the dynamic capabilities research has been seen as one of the most vibrant topics in strategic management, scholars have recently stressed that dynamic capabilities continue to be underrated because the knowledge mechanisms that lead to effective innovations have not been adequately explored. The visual mapping is then applied to solve the reviewed theoretical problems, being also suggested to firms interested in change and adapting their capabilities to the requirements of the business environment.

Details

Journal of Knowledge Management, vol. 27 no. 10
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 16 April 2024

Roberto Salvatore Di Fede, Marivel Gonzalez-Hernandez, Eva Parga-Dans, Pablo Alonso Gonzalez, Purificación Fernández-Zurbano, María Cristina Peña del Olmo and María-Pilar Sáenz-Navajas

The main aim of this study is to characterise and identify specific chemo-sensory profiles of ciders from the Canary Islands (Spain).

Abstract

Purpose

The main aim of this study is to characterise and identify specific chemo-sensory profiles of ciders from the Canary Islands (Spain).

Design/methodology/approach

Commercial samples of Canary ciders were compared to ciders from the Basque Country and Asturias. In total, 18 samples were studied, six for each region. The analysis comprised their sensory profiling and chemical characterisation of their polyphenolic profile, volatile composition, conventional chemical parameters and CIELAB colour coordinates. In parallel, the sensory profile of the samples from the Canary Islands was first compared with their Basque and Asturian counterparts by labelled sorting task. Then, their specific aroma profile was characterised by flash profile. Further quantification of sensory-active compounds was performed by GC–MS and GC-FID to identify the volatile compounds involved in their aroma profile.

Findings

Results show that Canary ciders present a specific chemical profile characterised by higher levels of ethanol, and hydroxycinnamic acids, mainly t-ferulic, t-coumaric and neochologenic acids, and lower levels of volatile and total acidity than their Asturian and Basque counterparts. They also present a specific aroma profile characterised by fruity aroma, mainly fruit in syrup and confectionary, and sweet flavours related to their highest levels of vinylphenols formed by transformation of hydroxycinnamic acids.

Originality/value

An integrated strategy to explore the typicity of the currently existing Canary ciders in the market was developed. The results are important in that they will help other regions to identify specific typical chemo-sensory profiles and to promote the creation of certifications supporting regional typicity.

Details

British Food Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 2 April 2024

Shilpi Aggarwal

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial…

Abstract

Purpose

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial attention in food, pharmaceutical, textile, cosmetics, etc. owing to their health and environmental benefits. The present study aims to focus on the elimination of the use of synthetic dyes and provides brief information about natural dyes, their sources, extraction procedures with characterization and various advantages and disadvantages.

Design/methodology/approach

In producing natural colors, extraction and purification are essential steps. Various conventional methods used till date have a low yield, as these consume a lot of solvent volume, time, labor and energy or may destroy the coloring behavior of the actual molecules. The establishment of proper characterization and certification protocols for natural dyes would improve the yielding of natural dyes and benefit both producers and users.

Findings

However, scientists have found modern extraction methods to obtain maximum color yield. They are also modifying the fabric surface to appraise its uptake behavior of color. Various extraction techniques such as solvent, aqueous, enzymatic and fermentation and extraction with microwave or ultrasonic energy, supercritical fluid extraction and alkaline or acid extraction are currently available for these natural dyes and are summarized in the present review article.

Originality/value

If natural dye availability can be increased by the different extraction measures and the cost of purified dyes can be brought down with a proper certification mechanism, there is a wide scope for the adoption of these dyes by small-scale dyeing units.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 31 July 2023

E.N. Maraj, Noreen Sher Akbar, Nabeela Kousar, Iffat Zehra and Taseer Muhammad

This paper aims to study the fluid flow and heat transfer within the Casson nanofluid confined between disk and cone both rotating with distinct velocities. For a comprehensive…

Abstract

Purpose

This paper aims to study the fluid flow and heat transfer within the Casson nanofluid confined between disk and cone both rotating with distinct velocities. For a comprehensive investigation, two distinct nano-size particles, namely, silicon dioxide and silicon carbide, are submerged in ethanol taken as the base fluid.

Design/methodology/approach

This paper explores the disk and cone contraption mostly encountered for viscosity measurement in various industrial applications such as lubrication industry, hydraulic brakes, pharmaceutical industry, petroleum and gas industry and chemical industry.

Findings

It is worth mentioning here that the radially varying temperature profile at the disk surface is taken into the account. The effect of prominent emerging parameters on velocity fields and temperature distribution are studied graphically, while bar graphs are drawn to examine the physical quantities of industrial interest such as surface drag force and heat transfer rate at disk and cone.

Originality/value

To the best of the authors’ knowledge, no study in literature exists that discusses the thermal enhancement of nano-fluidic transport confined between disk and cone both rotating with distinct angular velocities with heat transfer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 September 2022

Asieh Yahyazadeh, Enayatollah Moradi Rufchahi, Hessamoddin Yousefi and Seyyedeh Maryam Golzar Poursadeghi

This paper aims to synthesize 6-ethyl-4-hydroxyquinolin-2(1H)-one as a new enol-type coupling component in the preparation of some 3-arylazo-4-hydroxyquinolin-2(1H)-one dyes and…

Abstract

Purpose

This paper aims to synthesize 6-ethyl-4-hydroxyquinolin-2(1H)-one as a new enol-type coupling component in the preparation of some 3-arylazo-4-hydroxyquinolin-2(1H)-one dyes and evaluate the solvent effects on their absorption in ultraviolet-visible spectra.

Design/methodology/approach

6-Ethyl-4-hydroxyquinolin-2(1H)-one was synthesized by thermal cyclocondensation reaction of N, N′-bis(4-ethylphenyl) malonamide at 130–140°C in polyphosphoric acid. This compound was then applied in the azo-coupling reaction with some aniline-based diazonium salts, so as to prepare seven new mono-heterocyclic azo dyes. The structures of the compounds were confirmed using mass spectroscopic technique. Fourier transform infra red (FT-IR) and 1H proton nuclear magnetic resonance (1H NMR) and carbon-13 nuclear magnetic resonance (13 C NMR) studies on the structure of the azo compounds revealed that they exist as two E- and Z-isomers of hydrazone tautomer both in solid and solution state. The effects of acid and base on the visible absorption spectra of the dyes were also evaluated and discussed.

Findings

Ultra violet-visible UV-vis absorption spectra of the dyes didn’t show significant variation by changing of solvents because of intramolecular H-bonding between proposed hydrazone forms and 2- and 4-keto functions in their structures. The spectra of the dyes were not sensitive to the addition of acid but were very sensitive to base.

Originality/value

The synthesized 3-arylazo-4-hydroxyquinolin-2(1H)-one dyes are new members in the 4-hydroxyquinolin-2(1H)-one azo dyes family, where very few details regarding the synthesis of such dyes are reported before in the literature. They are unique in terms of synthesis and spectral properties.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 November 2022

Md. Raijul Islam, Ayub Nabi Nabi Khan, Rois Uddin Mahmud, Shahin Mohammad Nasimul Haque and Md. Mohibul Islam Khan

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a…

Abstract

Purpose

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a natural dye.

Design/methodology/approach

The dye was extracted from the outer skin of onions by boiling in water and later concentrated. The bio-mordants were prepared by maceration using methanol and ethanol. The fabrics were pre-mordanted, simultaneously mordanted and post-mordanted with various concentrations according to the weight of the fabric. The dyed and mordanted fabrics were later subjected to measurement of color coordinates, color strength and colorfastness to the washing test. Furthermore, the dyed samples were characterized by Fourier transform infrared, and different chemical bonds were analyzed by X-ray photoelectron spectroscopy analysis.

Findings

Significant improvement was obtained in colorfastness and color strength values in various instances using banana peel and guava leaves as bio mordants. Post-mordanted with banana peel provided the best results for wash fastness. Better color strength was achieved by fabric post-mordanted with guava leave extracts.

Originality/value

Sustainable dyeing methods of natural dyes using banana peel and guava leaves as bio mordants were explored on jute–cotton union fabrics. Improvement in colorfastness and color strength for various instances was observed. Thus, this paper provides a promising alternative to metallic salt mordants.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 156