Search results

1 – 10 of over 9000
Article
Publication date: 24 June 2019

Jan Karthaus, Benedikt Groschup, Robin Krüger and Kay Hameyer

Due to the increasing amount of high power density high-speed electrical machines, a detailed understanding of the consequences for the machine’s operational behaviour and…

Abstract

Purpose

Due to the increasing amount of high power density high-speed electrical machines, a detailed understanding of the consequences for the machine’s operational behaviour and efficiency is necessary. Magnetic materials are prone to mechanical stress. Therefore, this paper aims to study the relation between the local mechanical stress distribution and magnetic properties such as magnetic flux density and iron losses.

Design/methodology/approach

In this paper, different approaches for equivalent mechanical stress criteria are analysed with focus on their applicability in electrical machines. Resulting machine characteristics such as magnetic flux density distribution or iron are compared.

Findings

The study shows a strong influence on the magnetic flux density distribution when considering the magneto-elastic effect for all analysed models. The influence on the iron loss is smaller due to a high amount of stress-independent eddy current loss component.

Originality/value

The understanding of the influence of mechanical stress on dimensions of electrical machines is important to obtain an accurate machine design. In this paper, the discussion on different equivalent stress approaches allows a new perspective for considering the magneto-elastic effect.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 May 2022

Massicilia Dahmani, Abdelghani Seghir, Nabil Issaadi and Ouali Amiri

This study aims to propose a numerical modeling procedure for response analysis of elastic body floating in water and submitted to regular waves. An equivalent simplified…

Abstract

Purpose

This study aims to propose a numerical modeling procedure for response analysis of elastic body floating in water and submitted to regular waves. An equivalent simplified mechanical single-degree-of-freedom system allowing to reproduce the heave movements is first developed, then the obtained lumped characteristics are used for elastic analysis of the floating body in heave motion.

Design/methodology/approach

First, a two-dimensional numerical model of a rigid floating body in a wave tank is implemented under DualSPHysics, an open source computational fluid dynamics (CFD) code based on smoothed particle hydrodynamics method. Then, the obtained results are exploited to derive an equivalent mechanical mass-spring-damper model. Finally, estimated equivalent characteristics are used in a structural finite element modeling of the considered body assuming elastic behavior.

Findings

Obtained results concerning the floating body displacements are represented and validated using existing experimental data in the literature. Wave forces acting on the body are also evaluated. It was found that for regular waves, it is possible to replace the complex CFD refined model by an equivalent simplified mechanical system which makes easy the use of structural finite element analysis.

Originality/value

The originality of this work lies in the proposed procedure to evaluate the mechanical properties of the equivalent elastic system. This allows to couple two different software tools and to take advantages of their features.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 May 2011

Dejan V. Tošić and Marija F. Hribšek

The purpose of this paper is to model multilayer structure surface acoustic wave (SAW) sensors, incorporated in CMOS or micro‐electro‐mechanical system integrated circuits, and to…

Abstract

Purpose

The purpose of this paper is to model multilayer structure surface acoustic wave (SAW) sensors, incorporated in CMOS or micro‐electro‐mechanical system integrated circuits, and to derive the corresponding wave velocity as an analytic expression in terms of the layers‘ thickness and density, which is suitable for analysis and design.

Design/methodology/approach

The method is based on an electro‐mechanical equivalent model of multilayer structure SAW sensors. A multilayered SAW device is represented by a two‐port electrical equivalent circuit consisting of three parts: input transducer, output transducer, and between them the delay line, which is the sensing part. The sensing part is modelled as a mechanical two‐port network. The wave velocity is calculated using analogy between the mechanical and electrical quantities and the fact that the wave motion of the SAW extends below the surface to a depth of about one wavelength.

Findings

The presented model predicts very efficiently and accurately the velocity of SAW sensors with multilayer substrates in the case where the thicknesses of upper layers are much smaller than the signal wavelength. The velocity can be calculated from the formula, so that elaborate numerical computations involving partial differential equations are avoided.

Research limitations/implications

The model and the velocity calculation can be applied only to acoustically thin upper and middle layers where acoustically thin means that a layer is sufficiently thin and rigid (large shear modulus). The presented results provide a starting‐point for further research in the analysis and design of sensors fabricated using AlGaN, GaN, AlN/diamond.

Practical implications

Since the majority of SAW sensors is designed with acoustically thin layers, the proposed model and calculation can be of interest for many practical material combinations. The presented model and calculation can be used in most cases of the optimal sensor design with respect to the sensor sensitivity or required area on the sensor chip.

Originality/value

The paper presents a new original model of multilayer structure SAW sensors and a new method of SAW velocity calculation. The method gives good results, with much simpler calculations than in the wave equation method, in cases where certain layers are acoustically thin.

Details

Microelectronics International, vol. 28 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 18 November 2020

Yuyang Zhang, Yonggang Leng, Hao Zhang, Xukun Su, Shuailing Sun, Xiaoyu Chen and Junjie Xu

An appropriate equivalent model is the key to the effective analysis of the system and structure in which permanent magnet takes part. At present, there are several equivalent

4066

Abstract

Purpose

An appropriate equivalent model is the key to the effective analysis of the system and structure in which permanent magnet takes part. At present, there are several equivalent models for calculating the interacting magnetic force between permanent magnets including magnetizing current, magnetic charge and magnetic dipole–dipole model. How to choose the most appropriate and efficient model still needs further discussion.

Design/methodology/approach

This paper chooses cuboid, cylindrical and spherical permanent magnets as calculating objects to investigate the detailed calculation procedures based on three equivalent models, magnetizing current, magnetic charge and magnetic dipole–dipole model. By comparing the accuracies of those models with experiment measurement, the applicability of three equivalent models for describing permanent magnets with different shapes is analyzed.

Findings

Similar calculation accuracies of the equivalent magnetizing current model and magnetic charge model are verified by comparison between simulation and experiment results. However, the magnetic dipole–dipole model can only accurately calculate for spherical magnet instead of other nonellipsoid magnets, because dipole model cannot describe the specific characteristics of magnet's shape, only sphere can be treated as the topological form of a dipole, namely a filled dot.

Originality/value

This work provides reference basis for choosing a proper model to calculate magnetic force in the design of electromechanical structures with permanent magnets. The applicability of different equivalent models describing permanent magnets with different shapes is discussed and the equivalence between the models is also analyzed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 10 May 2019

Mengsha Liu, J.Y. Li, Lixin Chen and J.S. Ju

The internal force is more complicated in a combined load case than in a single load case, and the influence of the combined load on the stress cannot be neglected. The purpose of…

Abstract

Purpose

The internal force is more complicated in a combined load case than in a single load case, and the influence of the combined load on the stress cannot be neglected. The purpose of this paper is to study the mechanical behavior of the flexible riser under combined load conditions of tension and internal pressure or external pressure.

Design/methodology/approach

The mechanical behavior of the flexible riser under combined load conditions is studied by numerical simulation with a nine-layer detailed finite element model. The layers of flexible riser are modeled separately, and the interactions between layers have been taken into consideration in numerical simulation.

Findings

Under tension and internal pressure or external pressure, the pressure armor will bear extra external pressure because of the squeezing actions between layers caused by tension, and the extra external pressure will increase proportionately with the increase of the tension. Under internal pressure and tension, the internal stress for tension armor was nearly unchanged compared to that under unique tension load, whereas under external pressure and tension, the change of internal stress for tension armor was significant. Prediction methods of internal force for pressure armor and tension armor under pressure and tension are given, and the result from the formula agrees well with the simulation results.

Originality/value

The prediction methods on the internal force of flexible riser proposed in this study are proven accurate, with numerical simulation results, and the prediction methods are convenient for engineering applications.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 February 2018

Haoyu Wang and Yan Li

This paper aims to develop a resonant accelerometer for structure optimization. The dynamic analysis of the resonator for resonant accelerometer are investigated.

Abstract

Purpose

This paper aims to develop a resonant accelerometer for structure optimization. The dynamic analysis of the resonator for resonant accelerometer are investigated.

Design/methodology/approach

First, the working principle and mechanical model of the resonator are introduced. Moreover, dynamic analysis of the resonator is used for the purpose of investigating the dynamic characteristics of the resonant accelerometer. Finally, to verify the feasibility of the proposed dynamic analysis method, resonant accelerometer 1g static tumbling experiments of resonant accelerometer are built.

Findings

It can be seen from the natural frequency and the resonator mode that only when the resonator root stiffness is much greater than the resonant beam stiffness, there will be appear corresponding interference mode, therefore,the resonator root stiffness is avoid too large in design. The stability analysis result of resonant beam under axial force show that the resonant beam parameters should be maintained a constant. At the same time, it is concluded from the vibration mode analysis for resonant beam that the influence of the beam thickness and beam errors on the first and second order modes is great. On the other hand, it is concluded from the test result that the designed resonant accelerometer sensitivity is 98 Hz/g, which shows that the dynamic analysis method is feasible.

Practical implications

The research may be significant in the field of resonant sensors, supporting a variety of practical applications such as phone and game.

Originality/value

This paper seeks to establish a foundation for designing and optimizing resonant accelerometer structure. To this end, the dynamic analytical method of the resonator for resonant accelerometer was discussed. The results of this research have proved that the dynamic analysis based on a resonator is an effective approach and instructional in practical resonant sensor design.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 February 2012

Ivan Gavrilyuk, Marten Hermann, Ivan Lukovsky, Oleksandr Solodun and Alexander Timokha

The purpose of this paper is to derive linear modal equations describing the forced liquid sloshing in a rigid truncated (tapered) conical tank, as well as to show how to couple…

Abstract

Purpose

The purpose of this paper is to derive linear modal equations describing the forced liquid sloshing in a rigid truncated (tapered) conical tank, as well as to show how to couple these modal equations with “global” dynamic equations of a complex mechanical system carrying this tank.

Design/methodology/approach

Derivation of the modal equations can be based on the Trefftz variational method developed by the authors in a previous paper. Describing the coupled dynamics utilizes Lukovsky' formulas for the resulting hydrodynamic force and moment due to liquid sloshing.

Findings

The so‐called Stokes‐Joukowski potentials can be found by using the Trefftz method from the authors' previous paper with the same polynomial‐type functional basis. Coupling the modal equations with the global dynamic equations becomes a relatively simple task facilitated by Lukovsky's formulas. Using the linear multimodal method can be an efficient alternative to traditional numerical and analytical tools employed for studying the coupled vibrations of a tower with a conical rigid tank on the tower top.

Practical implications

The derived modal equations are equipped by tables with the computed non‐dimensional hydrodynamic coefficients. Interested readers (engineers) can incorporate the modal equations into the global dynamic equations of a whole mechanical system without new computations of these coefficients.

Originality/value

The multimodal method can be an alternative to traditional numerical tools. Using the derived modal equations simplifies analytical studies and provides efficient calculations of the coupled dynamics of a mechanical system carrying a rigid tapered conical tank with a liquid.

Details

Engineering Computations, vol. 29 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2019

Wenwu Han, Qianwang Deng, Wenhui Lin, Xuran Gong and Sun Ding

This study aims to present a model and analysis of automotive body outer cover panels (OCPs) assembly systems to predict assembly variation. In the automotive industry, the OCPs…

Abstract

Purpose

This study aims to present a model and analysis of automotive body outer cover panels (OCPs) assembly systems to predict assembly variation. In the automotive industry, the OCPs assembly process directly influences the quality of the automobile body appearance. However, suitable models to describe variation propagation of OCPs assembly systems remain unknown.

Design/methodology/approach

An adaptive state space model for OCPs assembly systems is introduced to accurately express variation propagation, including variation accumulation and transition, where two compliant deviations make impacts on key product characteristics (KPCs) of OCP, and the impacts are accumulated from welding process to threaded connection process. Another new source of variation from threaded connection is included in this model. To quantify the influence of variation from threaded connection on variation propagation, the threaded connection sensitivity matrix is introduced to build up a linear relationship between deviation from threaded connection and output deviation in KPCs. This matrix is solved by homogeneous coordinate transformation. The final deviation of KPCs will be transferred to ensure gaps and flushes between two OCPs, and the transition matrix is considered as a unit matrix to build up the transition relationship between different states.

Findings

A practical case on the left side body structure is described, where simulation result of variation propagation reveals the basic rule of variation propagation and the significant effect of variation from threaded connection on variation propagation of OCPs assembly system.

Originality/value

The model can be used to predict assembly variation or potential dimension problems at a preliminary assembly phase. The calculated results of assembly variation guide designers or technicians on tolerance allocation, fixture layout design and process planning.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 18 April 2024

Yaxing Ren, Ren Li, Xiaoying Ru and Youquan Niu

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller…

Abstract

Purpose

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller range and shorter time. The developed active shock absorber will also improve the safety and comfort of passengers driving in ultra-high-speed elevators.

Design/methodology/approach

A six-degree of freedom dynamic model is established according to the position and condition of the car. Then the active shock absorber and disturbance compensation-based adaptive control scheme are designed and simulated in MATLAB/Simulink. The results are analysed and compared with the traditional shock absorber.

Findings

The results show that, compared with traditional spring-based passive damping systems, the designed active shock absorber can reduce vibration displacement by 60%, peak acceleration by 50% and oscillation time by 2/3 and is more robust to different spring stiffness, damping coefficient and load.

Originality/value

The developed active shock absorber and its control algorithm can significantly reduce vibration amplitude and converged time. It can also adjust the damping strength according to the actual load of the elevator car, which is more suitable for high-speed elevators.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 5 April 2024

Heping Liu, Jinxin Lu, Fusheng Zhu and Ani Luo

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Abstract

Purpose

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Design/methodology/approach

The mathematical models and dynamic models of the D-bar dual cable (hereafter referred to as DD cable) unit of the tensegrity-based traction structure are established. Based on the minimum mass method, the mass of the DD cable unit in the critical state (cable member is yielding, or bar member is buckling or yielding) is analyzed. Then, the tensile strength of the DD cable unit and single cable unit under the same condition is compared using the control variate method. Finally, based on ANSYS dynamic simulation, the stability of the two structures under the same external force disturbance was tested.

Findings

Expressions for the minimum mass of the DD cable unit under different failure conditions are solved. Dynamic simulation results show that the capacity of resisting disturbance of the DD cable unit is much better than that of the single cable unit under the same wind speed. So, we find a structure more suitable for the fixed connection of an airship.

Originality/value

This study helps to provide theoretical reference and thinking for the practical application of the traction structure with a D-bar dual cable unit.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 9000