Search results

1 – 10 of over 1000
Article
Publication date: 1 March 2011

Simona Jevšnik, Zoran Stjepanovič, Lea Heikinheimo and Karl Gotlih

Enzyme treatment technologies are frequently applied in textile processing for the modification of fabric handle appearance and other surface characteristics in regard to cotton…

Abstract

Purpose

Enzyme treatment technologies are frequently applied in textile processing for the modification of fabric handle appearance and other surface characteristics in regard to cotton and cotton blended fabrics. The purpose of this paper is to understand the impact of enzyme treatments on fabric preparation, dyeing, and finishing processes of woven fabrics. In particular, certain mechanical and surface properties of 100 percent cotton interlock knitted fabrics after treatment with a cellulase enzyme.

Design/methodology/approach

Interlock knitted fabrics were used for this research. These cotton fabrics were treated with experimental Trichoderma reesei cellulases containing different cellulase profiles and treatment was carried out under laboratory conditions. The effects of cellulase treatment on weft knitted fabric regarding mechanical and surface properties were evaluated using the KES‐FB Kawabata evaluation system. The influence of enzyme treatments, friction, and geometrical roughness on the face and reverse side of interlock knitted fabrics were discussed in comparison with untreated interlock knitted fabric.

Findings

After each of the enzyme treatments, the interlock knitted fabrics lost part of their weight and, therefore, they became thinner. Furthermore, the extension properties become higher in both directions with regard to the untreated knitted fabric for all used enzymes and carried out treatments.

Originality/value

The paper usefully analyzes changes in the extension and surface properties of enzyme‐treated interlock knitted fabrics by investigating the influence of whole or enriched endoglucanases celullases of Trihoderma reesei under different treatment conditions.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 October 2018

Ya Guo, Zhenhua Sun, Xiaoqing Guo, Yanfen Zhou, Liang Jiang, Shaojuan Chen and Jianwei Ma

At present, the enzyme washing process is widely used in hemp garment in the industry. However, it has many disadvantages. First, it is inefficient and labor-intensive, which can…

Abstract

Purpose

At present, the enzyme washing process is widely used in hemp garment in the industry. However, it has many disadvantages. First, it is inefficient and labor-intensive, which can only be produced in small quantities and will take much time for workers to check. Second, its cost is high. The strength loss of the garment is up to 20 percent, with a bad damage. Presently, the enzyme washing process of the gray fabric is not industrialized. The purpose of this paper is to obtain a stable and efficient process for the enzyme washing of the gray fabric.

Design/methodology/approach

The whiteness, weight loss rate, strength, dyeing property and fabric style of enzyme washed gray fabrics were studied.

Findings

The results showed that the enzyme treated fabric has soft handle, smooth surface, good elasticity and high levelness, as well as low strength reduction rate under the optimized condition of bath ratio of 1:12, cellulase dosage of 0.3 percent, pectinase dosage of 1 g/L, treatment temperature of 55°C, treatment time of 80 min and pH of 6.

Originality/value

First, the process is environment friendly, green and sustainable and, second, it will make the industrialization of the enzyme washing process of gray fabrics, with a high commercial value.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 December 2023

Prapti Behera, Kannan N., Priyodip Paul, Sanjukta Aravind and Balaji S.

The textile sector struggles with cotton stickiness from honeydew contamination. It hurts agriculture and marketability. This study aims to examine how bacterial enzymes could…

Abstract

Purpose

The textile sector struggles with cotton stickiness from honeydew contamination. It hurts agriculture and marketability. This study aims to examine how bacterial enzymes could reduce honeydew-contaminated cotton adherence in textile businesses sustainably.

Design/methodology/approach

Enzyme was extracted from bacteria isolated from the fermented bamboo shoots “Lung siej”. The enzyme was tested for α-glucosidase using p-nitrophenyl-α-D-glucopyranoside as a substrate. Design of experiments determined enzyme activity temperature and reaction time. Laboratory-prepared artificial honeydew was added to ginning mill cotton to show honeydew contamination. After enzyme treatment, sticky cotton was tested for microscopic examination, ultraviolet (UV), Benedict’s, Elsner colorimetric, high volume instrument (HVI) and viscosity tests.

Findings

The bacterial isolate is characterized as Lysinibacillus sp. as confirmed by 16S rRNA gene sequencing. The enzyme extracted was identified as α-glucosidase. The ideal temperature and reaction time for enzymatic activity were 32 °C and 35 min, respectively, using central composite design. The microscopic examination, UV test, Benedict’s test, Elsner colorimetric test, HVI test and viscosity test showed that bacterial enzyme treatment reduced cotton fiber adherence.

Originality/value

Although few patents have examined the effect of yeast enzymes, to the best of the authors’ knowledge, a bacterial enzyme is investigated for the first time to reduce the adhesion of honeydew-contaminated cotton.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 3 July 2017

Padma S. Vankar, Dhara Shukla, Samudrika Wijayapala and Asish Kumar Samanta

Natural dyes are mostly used for dyeing of natural fibre textiles to improve their eco-friendly features. For successful commercial use of natural dyes, the appropriate and…

Abstract

Purpose

Natural dyes are mostly used for dyeing of natural fibre textiles to improve their eco-friendly features. For successful commercial use of natural dyes, the appropriate and standardized dyeing techniques need to be adopted. Appropriate scientific techniques or procedures need to be derived from scientific studies on dyeing methods, dyeing process variables, dyeing kinetics and compatibility of selective natural dyes with minimal use of hazardous chemicals.

Design/methodology/approach

In the present study, different enzymes (protease, amylase, xylanase, pectinase, phytase) were used efficiently with Rubia dye by using simultaneous and two-step processes; both the processes were developed with an aim for conservation of time and energy, for the ease of industrial use. The highlights of the study are twofold: eco-friendly natural dyeing by using enzyme replacing metal mordant and room temperature dyeing, which is a completely new concept.

Findings

Experiments showed that enzymatic treatment can give good colour strength to silk fabric using Rubia as a dye source and has good potential for commercial dyeing. It is a non-toxic dye. Use of enzymes were a deliberate attempt to avoid metal mordanting in silk dyeing, as it would make textile dyeing eco-friendlier. The order of reactivity of enzymes in one-step process was found to be protease > phytase > xylanase > amylase > pectinase. Similarly, for two-step dyeing process, the order of reactivity of enzymes observed was protease > amylase > xylanase = pectinase > phytase. Protease enzyme was the best option in both the cases. Overall, it can be concluded that in the case of enzymatic treatment, the two-step process was better in terms of larger K/S values, colour coordinate values and dye adherence.

Research limitations/implications

A new domain of room temperature dyeing technique has been introduced.

Originality/value

In the present study, different enzymes (protease, amylase, xylanase, pectinase, phytase) were used efficiently with Rubia dye by using simultaneous and two-step processes; both the processes were developed with an aim for conservation of time and energy, for the ease of industrial use. The highlights of the research are twofold: eco-friendly natural dyeing by using enzyme replacing metal mordant and room temperature dyeing, which is a completely new concept. Overall, the ease of use for industrial application. Rubia dye from Sri Lanka has been used in conjunction with different enzymes to show that metal mordanting can be easily replaced by the use of eco-friendly and biodegradable enzymes. The most attractive feature of this study is the low-temperature dyeing at 30-40°C. For any dyeing house, this process can be easily adapted on jigger, winch or even in continuous padding machine. Good fastness properties and dye adherence have been the other highlights of this study.

Details

Pigment & Resin Technology, vol. 46 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 September 2017

Phisut Naknaen

The purpose of this paper is to investigate the effects of concentrations of mixed enzymes (Rapidase EX Color and Accellerase) and incubation times on the release of biologically…

Abstract

Purpose

The purpose of this paper is to investigate the effects of concentrations of mixed enzymes (Rapidase EX Color and Accellerase) and incubation times on the release of biologically active compounds and the extraction efficiency of cantaloupe juice.

Design/methodology/approach

Different concentrations of the mixed enzymes (0.25-1.0 per cent) and incubation times (1-5 h) were used. The yield, clarity, bioactive compounds and antioxidant activities were investigated.

Findings

The total phenolic content, total flavonoid content, β-carotene, ascorbic acid content and antioxidant capacities as evaluated by 2, 2-diphenyl-1-picrylhydrazyl-radical scavenging activity and ferric reducing antioxidant power were approximately 6, 3.25, 3, 2.5, 3.5 and 3.0 times higher than the control samples after incubating with 0.5 per cent enzyme for 2 h (p < 0.05). This condition was recommended to promote the release of biologically active compounds and still provided a 32 per cent increase in the amount of the extracted juice.

Practical implications

Cantaloupe juice produced by enzymatic treatment could be claimed to be a source of health enhancing compounds. This work could be used as a guideline for the industry to develop high value-added functional drinks from cantaloupe.

Originality/value

This study evaluates for the first study on the application of Rapidase EX Color and Accellerase for improving the phytochemical compounds in cantaloupe juice. This technique could successfully extract the cantaloupe juice with biologically active nutrients containing beneficial health effects.

Details

Nutrition & Food Science, vol. 47 no. 5
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 1 April 1972

Language may be a treasured heritage of small comunities, all that is left to bind them together. It is often a matter of national or regional pride, keeping alive a tongue dead…

Abstract

Language may be a treasured heritage of small comunities, all that is left to bind them together. It is often a matter of national or regional pride, keeping alive a tongue dead centuries past everywhere else; in an area of the Grisons forty thousand Swiss speak the Latin Romansch, the tongue spoken by the citizens of ancient Rome, and nowhere else in the world is it heard. There are so‐called official languages; in the councils of Europe, it has always been French, which is the official language of the European Economic Community; this means, of course, that all EEC Directives and in due course, judgments of its courts, will be first delivered in French.

Details

British Food Journal, vol. 74 no. 4
Type: Research Article
ISSN: 0007-070X

Article
Publication date: 1 February 2004

Neelam Khetarpaul, Renu Garg and Rajni Goyal

Presoaking treatment of partially defatted soy dhal in water or enzyme (lipase) solution for one, two and four hours decreased the cooking time substantially. When soy dhal was…

399

Abstract

Presoaking treatment of partially defatted soy dhal in water or enzyme (lipase) solution for one, two and four hours decreased the cooking time substantially. When soy dhal was soaked in water for one, two and four hours, it resulted in 0 per cent, 1.24 per cent and 6.17 per cent decrease in cooking time over the unsoaked soy dhals, respectively. Soaking defatted soy dhal in lipase enzyme solution at three different concentrations, i.e. 0.5 per cent, 0.75 per cent and 1.0 per cent reduced the cooking time from 62.96 per cent to 74.69 per cent, over the control (unsoaked soy dhal) depending on the presoaking period. As the soaking period was increased from one to four hours irrespective of the concentration used, decrease in cooking time was observed. Maximum decrease in cooking time was found with soaking in 1 per cent concentration of lipase solution for four hours. There were non‐significant differences between the organoleptic scores of water soaked and enzyme soaked dhal. However, sensory scores of soy dhal were slightly improved by lipase enzyme soaking when compared to water soaked soy dhal.

Details

Nutrition & Food Science, vol. 34 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 19 September 2018

Amit Madhu and J.N. Chakraborty

Enzymatic desizing using α-amylase is the conventional and eco-friendly method of removing starch based size. Conventionally, enzymes are drained after completion of process;…

Abstract

Purpose

Enzymatic desizing using α-amylase is the conventional and eco-friendly method of removing starch based size. Conventionally, enzymes are drained after completion of process; being catalysts, they retain their activity after reaction and need to be reused. Immobilization allows the recovery of enzymes to use them as realistic biocatalyst. This study aims to recover and reuse of α-amylase for desizing of cotton via immobilization.

Design/methodology/approach

This paper investigates the application of α-amylase immobilized on Chitosan and Eudragit S-100 for cotton fabric desizing. A commercial α-amylase was immobilized on reversibly soluble-insoluble polymers to work out with inherent problems of heterogeneous reaction media. The immobilization process was optimized for maximum conjugate activity, and immobilized amylases were applied for grey cotton fabric desizing.

Findings

The desizing performance of immobilized amylases was evaluated in terms of starch removal and was compared to free enzyme. The immobilized amylases showed adequate desizing efficiency up to four cycles of use and were recovered easily at the end of each cycle. The amylase immobilized on Eudragit is more efficient for a particular concentration than chitosan.

Practical implications

Immobilization associates with insolubility and increased size of enzymes which lead to poor interactions and limited diffusion especially in textiles where enzymes have to act on macromolecular substrates (heterogeneous media). The selection of support materials plays a significant role in this constraint.

Originality/value

The commercial α-amylase was covalently immobilized on smart polymers for cotton fabric desizing. The target was to achieve immobilized amylase with maximum conjugate activity and limited constraints. The reversibly soluble-insoluble polymers support provide easy recovery with efficient desizing results in heterogeneous reaction media.

Details

Research Journal of Textile and Apparel, vol. 22 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 24 May 2023

Tuna Uysaler, Pelin Altay and Gülay Özcan

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high…

Abstract

Purpose

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high water, energy and time consumption. Nowadays, laser fading, which is a computer-controlled, dry, ecological finishing method, is preferred in the denim fading process. The purpose of this study is to observe the effects of chemical pretreatment applications on laser-faded denim fabric in terms of color and mechanical properties. To eliminate the enzyme washing process in denim fading and to minimize the disadvantages of laser fading, such as decreased mechanical properties and increased fabric yellowness, various chemical pretreatment applications were applied to the denim fabric before laser fading, followed by simple rinsing instead of enzyme washing.

Design/methodology/approach

Two different indigo-dyed, organic cotton denim fabrics with different unit weights were exposed to pretreatment processes and then laser treatment, followed by simple rinsing. Polysilicic acid, boric acid, borax and bicarbonate were used for pretreatment processes, and laser treatment was carried out under optimized laser parameters (40 dpi resolution and 300 µs pixel time). Tensile strength was tested, and color values (CIE L*, a*, b*, ΔE*, C* and h), color yield (K/S), yellowness and whiteness indexes were measured to identify the color differences.

Findings

Before laser fading, 30 g/L and 40 g/L polysilicic acid pretreatments for sulfur-indigo-dyed fabric and a mixture of 10 g/L boric acid and 10 g/L borax pretreatments for the fabric only indigo-dyed were recommended for the laser fading with sufficient mechanical properties and good color values.

Originality/value

With the chemical pretreatments defined in this study, it was possible to reduce yellowness and maintain the mechanical properties after laser fading, thus minimizing the disadvantages of laser treatment and also eliminating enzyme washing.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 28 June 2013

Yuwei Luo and Weihua Xie

The bioavailability of iron from faba bean is low because it is present as an insoluble complex with food components such as phytate, fiber and tannin. The purpose of this paper…

Abstract

Purpose

The bioavailability of iron from faba bean is low because it is present as an insoluble complex with food components such as phytate, fiber and tannin. The purpose of this paper is to try to identify the nature of the complexes between anti‐nutritional factors and iron in faba bean and legume fractions by using simulations of gastro‐intestinal digestion.

Design/methodology/approach

To this aim, the authors evaluated the effect of the action of fiber‐ and/or phytate‐degrading enzymes on solubilization of iron from insoluble residues obtained after gastro‐intestinal digestion of faba bean flour and fractions.

Findings

In insoluble residues of raw faba bean flour, simultaneous action of cellulase and phytases made it possible to release about 28 percent units more iron than that released with the treatment without enzymes. About 49.8 percent of iron in raw faba bean flour was solubilized after in vitro digestion and simultaneous action of cellulase and phytase. In the residues of the hull fraction, a significant increase in iron solubility has not been seen (p>0.05) after action of cellulase or phytases. Simultaneous action of cellulase and phytase led to the release of more than 60 and 18 percent units of additional iron for residues of dehulled faba bean and hull fractions, respectively.

Originality/value

In dehulled faba bean, iron was chelated by phytates and fibers. In the hull of faba bean, a high proportion of iron was chelated by iron‐tannins, while the rest of iron was chelated in complexes between phytates and fibers.

Details

British Food Journal, vol. 115 no. 7
Type: Research Article
ISSN: 0007-070X

Keywords

1 – 10 of over 1000