Search results

1 – 10 of 400
Article
Publication date: 25 February 2022

Jiabao Pan, Huaibiao Wu, Ao Wang, Qingwen Dai and Xiaolei Wang

This paper aims to investigate the influence of high-temperature thermal action on grease performance from the angle of film-forming performance.

127

Abstract

Purpose

This paper aims to investigate the influence of high-temperature thermal action on grease performance from the angle of film-forming performance.

Design/methodology/approach

A static thermal aging method was used to prepare high-temperature thermal grease samples after high-temperature thermal action. On the basis of optical interference technology, the film-forming characteristics of fresh grease samples and the grease samples after high-temperature thermal action under variable speed and fixed speed conditions were explored.

Findings

The decrease in the structural entanglement performance of the grease after short-term high-temperature thermal action makes its film-forming performance better. The mechanism is that the lubricating grease soap fiber entanglement is reduced. Although the continuous high-temperature thermal action can make the grease film-forming performance better, its mechanism is that the soap fiber structure caused by high-temperature thermal action is damaged and is easy to be cut off under the action of shear.

Originality/value

The effect of structural system change on its film formation performance was discussed in combination with the change in grease structure characteristics, and the mechanism of action was revealed.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Book part
Publication date: 17 July 2007

Allen C. Bluedorn and Kimberly S. Jaussi

As part of the developing attention being paid to time in organization science, this chapter discusses two temporal dimensions – polychronicity and speed – and develops…

Abstract

As part of the developing attention being paid to time in organization science, this chapter discusses two temporal dimensions – polychronicity and speed – and develops propositions relating these two temporal dimensions to other organization science variables. The propositions are specified according to levels of analysis, at least three of which are considered in propositions presented for each dimension. Two other temporal dimensions – punctuality and temporal depth – are also described, albeit not as extensively as polychronicity and speed. A fifth temporal phenomenon, entrainment, provides insights into organizational processes as well as the four temporal dimensions. The chapter concludes by outlining some reasons for caution for both theory and practice.

Details

Multi-Level Issues in Organizations and Time
Type: Book
ISBN: 978-0-7623-1434-8

Article
Publication date: 7 October 2022

Danny Sandra, Jesse Segers and Robert Giacalone

To provide ways of how organizations can benefit from entrainment, the purpose of this paper is to create a better theoretically grounded understanding of entrainment in…

Abstract

Purpose

To provide ways of how organizations can benefit from entrainment, the purpose of this paper is to create a better theoretically grounded understanding of entrainment in organizations by reviewing the literature, describing managerial implications and identifying future research directions.

Design/methodology/approach

A systematic literature review of relevant literature based on peer-reviewed research papers published in highly ranked scientific journals.

Findings

It provides a clear understanding as to what constitutes entrainment in organizations and emphasizes its complexity. Further, six benefits of entrainment are highlighted, including the positive relationship between entrainment and organizational outcomes. The review may also provide entrepreneurs and practitioners a scientific basis for developing innovative tools to help managers’ foster entrainment in organizations.

Research limitations/implications

The review indicates that entrainment plays a much larger role in organizations than we think. Change leaders' actions may impact the emotions and actions of change recipients through entrainment. The selected keywords used in the search and the researcher's bias of including or excluding articles for this review are the major research limitations.

Originality/value

It is one of the first papers, to our knowledge, to provide a structured overview and understanding of the entrainment phenomenon in an organizational context, based on 41 peer-reviewed articles.

Details

Journal of Organizational Change Management, vol. 36 no. 2
Type: Research Article
ISSN: 0953-4814

Keywords

Article
Publication date: 9 April 2019

Mohamed Abd Alsamieh

The purpose of this paper is to study the behavior of elastohydrodynamic contacts subjected to forced harmonic vibrations including the effect of changing various working…

Abstract

Purpose

The purpose of this paper is to study the behavior of elastohydrodynamic contacts subjected to forced harmonic vibrations including the effect of changing various working parameters such as frequency, load amplitude and entrainment speed.

Design/methodology/approach

The time-dependent Reynolds equation is solved using the Newton–Raphson technique. The film thickness and pressure distribution are obtained at every time step by simultaneous solution of the Reynolds equation and film thickness equation including elastic deformation.

Findings

The frequency of vibration, load amplitude and entrainment speed are directly related to the film thickness perturbation, which is formed during load increasing phase of the cycle. The film thickness formed during load increasing phase is larger than that formed during load decreasing phase with larger deviation at a higher frequency or load amplitude and vice versa for lower frequency or load amplitude. The entrainment speed of the contact has an opposite effect to that of the frequency of vibration or load amplitude.

Originality/value

Physical explanations for the behavior of elastohydrodynamic contact subjected to forced harmonic vibration are presented in this paper for various working parameters of frequency, load amplitude and entrainment speed.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 September 2017

Xue-feng Wang, R.F. Hu, Weiyan Shang and Fuzhou Zhao

The dent is one of typical surface defects on the surfaces of the machine elements and it is not in fact inerratic. This work aims to investigate the effect of a single dent with…

Abstract

Purpose

The dent is one of typical surface defects on the surfaces of the machine elements and it is not in fact inerratic. This work aims to investigate the effect of a single dent with a marginal bump on the film shape in elastohydrodynamic lubrication (EHL) point contacts.

Design/methodology/approach

The experimental investigations of a single dent with marginal bump were carried out using multi-beam interferometry in EHL point contacts. In the meantime, its numerical simulation was also finished using multi-level method and multilevel multi-integration method. The effects of the entrainment velocity and the applied load as well as the slide-roll ratio on the film were chiefly discussed. Meanwhile, the comparison of films between smooth and dented surfaces was conducted under simple sliding conditions.

Findings

Under pure sliding conditions, the minimum film thickness presents itself near the marginal bump at lower entrainment velocity. The inlet dimple before the marginal bump is subjected to the operating conditions. Under pure rolling conditions, the shape of the dent is almost unchanged when it is passing through the contact region at lower entrainment velocity. The dent depth hardly depends on the applied load under static conditions. However, larger load enhances the inlet dimple and the elastic deformation of the dent with the marginal bump under pure sliding conditions.

Originality/value

This work is helpful to understanding the effect of the marginal bump before the single dent on point contact EHL films.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 August 2022

Mohamed Abd Alsamieh

The purpose of this study is to investigate the behavior of ultra-thin film formation at the start-up of motion for different acceleration rates and final entrainment speed

Abstract

Purpose

The purpose of this study is to investigate the behavior of ultra-thin film formation at the start-up of motion for different acceleration rates and final entrainment speed, including the effect of intermolecular forces; solvation and Van der Waals’ in addition to hydrodynamic action for the elastohydrodynamic lubrication of point contact problems.

Design/methodology/approach

The equation of motion of the ball is considered to account for the applied force on the ball during the start-up of motion. The Newton–Raphson with Gauss–Seidel iterative method is used to solve the Reynolds, film thickness and load balance equations simultaneously. In addition to hydrodynamic effects, solvation and Van der Waals’ forces are taken into account in the calculation of bearing capacity.

Findings

The simulation results showed that the effects of acceleration rate are important for ultra-thin film formation at the start-up of motion. Increasing the rate of acceleration results in a higher value of central film thickness during the start-up of motion than the corresponding steady-state film thickness value reached at the final entrainment speed. The effects of intermolecular forces are important to prevent metal-to-metal contact during the inactive period of motion, where a constant value of film thickness is achieved regardless of the value of the acceleration rate or final entrainment speed.

Originality/value

The behavior of ultra-thin film formation at start-up of motion, including the effect of intermolecular forces; solvation and Van-der-Waals’ along with hydrodynamic action, are evaluated after different acceleration rates and final entrainment speeds.

Details

Industrial Lubrication and Tribology, vol. 74 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 August 2023

Wenxun Jiang, Wen Wang and Mingfei Ma

Due to high speeds, heavy loads, large slide-to-roll ratios (SRR) and other variable operating conditions, some rolling bearings that have been working in harsh conditions may…

Abstract

Purpose

Due to high speeds, heavy loads, large slide-to-roll ratios (SRR) and other variable operating conditions, some rolling bearings that have been working in harsh conditions may experience flash temperatures in the contact area, which may result in early damage like smearing and then affect service life. This study aims to investigate the flash temperature phenomenon of rolling bearings through theoretical and experimental analysis.

Design/methodology/approach

A technology for measuring temperature distribution in rolling ball on disk contact under lubrication was developed. The test-rig can simulate the ball bearing contact. The effects of working conditions such as entrainment speed, load, SRR and lubricating oil viscosity on the flash temperature were investigated.

Findings

The results of the theoretical calculation and experiments indicate that the parameters promoting the reduction of film thickness in elastohydrodynamic lubrication are always related with the number of flash points, even film thickness reduced to mixed lubrication. The flash temperature is easier to happen in conditions of high SRR, heavy load, slow entrainment speed and low viscosity oil.

Originality/value

This work conducts an experimental study on the flash temperature phenomenon, providing a test technology for bearing lubrication and failure investigation.

Peer review

This author has opted into Transparent Peer Review available at: https://publons.com/publon/10.1108/ILT-04-2023-0104

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 March 2023

Lei Cao, Jianlin Cai, Cheng Wang, Tianyou Yang, Wei Zhou and Liwu Wang

The purpose of this study is to describe and observe the influence of boundary slip associated with an arbitrary entrainment angle on the contact lubrication properties of…

Abstract

Purpose

The purpose of this study is to describe and observe the influence of boundary slip associated with an arbitrary entrainment angle on the contact lubrication properties of ellipses.

Design/methodology/approach

Based on the modified Reynolds equation, the boundary slip of any angle is considered in the elliptic contact, and numerical simulation is carried out. In the above calculation, the progressive mesh densification method is used, which greatly reduces the computation time.

Findings

The results indicate that the variation of film thickness corresponding to different entrainment angles is distinct from those without considering boundary slip. In addition, boundary slip reduces the central film thickness and minimum film thickness, which makes the hydrodynamic pressure distribution smoother.

Originality/value

The present study focuses on the specific condition with the arbitrary direction of rolling and sliding velocity found in hypoid gears and worm, and some other components. The influence of boundary slip associated with arbitrary entrainment angle on the lubrication film thickness in elliptical contacts is first revealed, which improves a good understanding of elastohydrodynamic lubrication characteristics.

Details

Industrial Lubrication and Tribology, vol. 75 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2002

M.F.J. Bohan, I.J. Fox, T.C. Claypole and D.T. Gethin

The paper focuses on the solution of a numerical model to explore the sliding and non‐Newtonian fluid behaviour in soft elastohydrodynamic nip contacts. The solution required the…

Abstract

The paper focuses on the solution of a numerical model to explore the sliding and non‐Newtonian fluid behaviour in soft elastohydrodynamic nip contacts. The solution required the coupling of the fluid and elastomer regimes, with the non‐Newtonian fluid properties being described using a power law relationship. The analysis showed that the fluid characteristics as defined by the power law relationship led to large differences in the film thickness and flow rate with a movement of the peak pressure within the nip contact. The viscosity coefficient, power law index and sliding ratio were shown to affect the nip performance in a non‐linear manner in terms of flow rate and film thickness. This was found to be controlled principally by the level of viscosity defined by the power law equation. The use of a speed differential to control nip pumping capacity was also explored and this was found to be most sensitive at lower entrainment speeds.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 February 2021

Qiancheng Qin, Xue-Feng Wang, Rufu Hu and Xiaomin Cheng

This study aims to investigate the effects of single dent on the film thickness and pressure in elastohydrodynamically lubricated (EHL) point contacts by numerical analysis.

Abstract

Purpose

This study aims to investigate the effects of single dent on the film thickness and pressure in elastohydrodynamically lubricated (EHL) point contacts by numerical analysis.

Design/methodology/approach

The governing equations of single dent were established and then the variations of the film thickness and pressure induced by the applied load, the entrainment velocity and the ball radius were investigated. Meanwhile, the film thickness and pressure under smooth and dented surfaces were compared with each other.

Findings

The dent enhances both the maximum pressure and the second pressure peak. The minimum film thickness arises before the dent under certain conditions. In the meantime, the pressure decreases at the inside of the dent and the film thickness is just the reverse. The entrainment velocity remarkably affects the overall film thickness, whereas the rest of the input parameters mainly decides the details of the film curve. All input parameters remarkably affect the overall pressure, especially the maximum pressure.

Originality/value

This work is helpful to understanding the effect of the single dent on the lubricating properties of EHL point contacts.

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 400