Search results

1 – 10 of over 23000
Article
Publication date: 30 April 2021

J Aruna Santhi and T Vijaya Saradhi

This paper tactics to implement the attack detection in medical Internet of things (IoT) devices using improved deep learning architecture for accomplishing the concept bring your…

Abstract

Purpose

This paper tactics to implement the attack detection in medical Internet of things (IoT) devices using improved deep learning architecture for accomplishing the concept bring your own device (BYOD). Here, a simulation-based hospital environment is modeled where many IoT devices or medical equipment are communicated with each other. The node or the device, which is creating the attack are recognized with the support of attribute collection. The dataset pertaining to the attack detection in medical IoT is gathered from each node that is considered as features. These features are subjected to a deep belief network (DBN), which is a part of deep learning algorithm. Despite the existing DBN, the number of hidden neurons of DBN is tuned or optimized correctly with the help of a hybrid meta-heuristic algorithm by merging grasshopper optimization algorithm (GOA) and spider monkey optimization (SMO) in order to enhance the accuracy of detection. The hybrid algorithm is termed as local leader phase-based GOA (LLP-GOA). The DBN is used to train the nodes by creating the data library with attack details, thus maintaining accurate detection during testing.

Design/methodology/approach

This paper has presented novel attack detection in medical IoT devices using improved deep learning architecture as BYOD. With this, this paper aims to show the high convergence and better performance in detecting attacks in the hospital network.

Findings

From the analysis, the overall performance analysis of the proposed LLP-GOA-based DBN in terms of accuracy was 0.25% better than particle swarm optimization (PSO)-DBN, 0.15% enhanced than grey wolf algorithm (GWO)-DBN, 0.26% enhanced than SMO-DBN and 0.43% enhanced than GOA-DBN. Similarly, the accuracy of the proposed LLP-GOA-DBN model was 13% better than support vector machine (SVM), 5.4% enhanced than k-nearest neighbor (KNN), 8.7% finer than neural network (NN) and 3.5% enhanced than DBN.

Originality/value

This paper adopts a hybrid algorithm termed as LLP-GOA for the accurate detection of attacks in medical IoT for improving the enhanced security in healthcare sector using the optimized deep learning. This is the first work which utilizes LLP-GOA algorithm for improving the performance of DBN for enhancing the security in the healthcare sector.

Article
Publication date: 14 December 2021

Deepak S. Uplaonkar, Virupakshappa and Nagabhushan Patil

The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.

Abstract

Purpose

The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.

Design/methodology/approach

After collecting the ultrasound images, contrast-limited adaptive histogram equalization approach (CLAHE) is applied as preprocessing, in order to enhance the visual quality of the images that helps in better segmentation. Then, adaptively regularized kernel-based fuzzy C means (ARKFCM) is used to segment tumor from the enhanced image along with local ternary pattern combined with selective level set approaches.

Findings

The proposed segmentation algorithm precisely segments the tumor portions from the enhanced images with lower computation cost. The proposed segmentation algorithm is compared with the existing algorithms and ground truth values in terms of Jaccard coefficient, dice coefficient, precision, Matthews correlation coefficient, f-score and accuracy. The experimental analysis shows that the proposed algorithm achieved 99.18% of accuracy and 92.17% of f-score value, which is better than the existing algorithms.

Practical implications

From the experimental analysis, the proposed ARKFCM with enhanced level set algorithm obtained better performance in ultrasound liver tumor segmentation related to graph-based algorithm. However, the proposed algorithm showed 3.11% improvement in dice coefficient compared to graph-based algorithm.

Originality/value

The image preprocessing is carried out using CLAHE algorithm. The preprocessed image is segmented by employing selective level set model and Local Ternary Pattern in ARKFCM algorithm. In this research, the proposed algorithm has advantages such as independence of clustering parameters, robustness in preserving the image details and optimal in finding the threshold value that effectively reduces the computational cost.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 September 2019

Shuaishuai Geng, Yu Feng, Yaoguo Dang, Junjie Wang and Rizwan Rasheed

This paper aims to propose an enhanced algorithm and used to decision-making that specifically focuses on the choice of a domain in the calculation of degree of greyness according…

Abstract

Purpose

This paper aims to propose an enhanced algorithm and used to decision-making that specifically focuses on the choice of a domain in the calculation of degree of greyness according to the principle of grey numbers operation. The domain means the emerging background of interval grey numbers, it is vital for the operational mechanism of such interval grey numbers. However, the criteria of selection of domain always remain same that is not only for the calculated grey numbers but also for the resultant grey numbers, which can be assumed as unrealistic up to a certain extent.

Design/methodology/approach

The existence of interval grey number operation based on kernel and the degree of greyness containing two calculation aspects, which are kernel and the degree of greyness. For the degree of greyness, it includes concepts of domain and calculation of the domain. The concepts of a domain are defined. The enhanced algorithm is also comprised of four deductive theorems and eight rules that are linked to the properties of the enhanced algorithm of the interval grey numbers based on the kernel and the degree of greyness.

Findings

Aiming to improve the algorithm of the degree of greyness for interval grey numbers, based on the variation of domain in the operation process, the degree of greyness of the operation result is defined in this paper, and the specific expressions for algebraic operations are given, which is relevant to the kernel, the degree of greyness and the domain. Then, these expressions are used to the algorithm of interval grey numbers based on the kernel and the degree of greyness, improving the accuracy of the operation results.

Originality/value

The enhanced algorithm in this paper can effectively reduce the loss of information in the operation process, so as to avoid the situation where the decision values are the same and scientific decisions cannot be made during the grey evaluation and decision-making process.

Details

Kybernetes, vol. 49 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 11 April 2018

Mohamed A. Tawhid and Kevin B. Dsouza

In this paper, we present a new hybrid binary version of bat and enhanced particle swarm optimization algorithm in order to solve feature selection problems. The proposed algorithm

Abstract

In this paper, we present a new hybrid binary version of bat and enhanced particle swarm optimization algorithm in order to solve feature selection problems. The proposed algorithm is called Hybrid Binary Bat Enhanced Particle Swarm Optimization Algorithm (HBBEPSO). In the proposed HBBEPSO algorithm, we combine the bat algorithm with its capacity for echolocation helping explore the feature space and enhanced version of the particle swarm optimization with its ability to converge to the best global solution in the search space. In order to investigate the general performance of the proposed HBBEPSO algorithm, the proposed algorithm is compared with the original optimizers and other optimizers that have been used for feature selection in the past. A set of assessment indicators are used to evaluate and compare the different optimizers over 20 standard data sets obtained from the UCI repository. Results prove the ability of the proposed HBBEPSO algorithm to search the feature space for optimal feature combinations.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 19 June 2017

Hock Yeow Yap and Tong-Ming Lim

This paper aims to present social trust as a variable of influence by demonstrating the possibilities of trusted social nodes to improve influential capability and rate of…

1140

Abstract

Purpose

This paper aims to present social trust as a variable of influence by demonstrating the possibilities of trusted social nodes to improve influential capability and rate of successfully influenced social nodes within a social networking environment.

Design/methodology/approach

This research will be conducted using simulated experiments. The base algorithm in research uses genetics algorithm diffusion model (GADM) where it carries out social influence calculations within a social networking environment. The GADM algorithm will be enhanced by integrating trust values into its influential calculations. The experiment simulates a virtual social network based on a social networking site architecture from the data set used to conduct experiments on the enhanced GADM and observe their influence capabilities.

Findings

The presence of social trust can effectively increase the rate of successfully influenced social nodes by factorizing trust value of one source node and acceptance rate of another recipient node into its probabilistic equation, hence increasing the final acceptance probability.

Research limitations/implications

This research focused exclusively on conceptual mathematical models and technical aspects so far; comprehensive user study, extensive performance and scalability testing is left for future work.

Originality/value

Two key contributions of this paper are the calculation of social trust via content integrity and the application of social trust in social influential diffusion algorithms. Two models will be designed, implemented and evaluated on the application of social trust via trusted social nodes and domain-specified (of specific interest groups) trusted social nodes.

Details

International Journal of Web Information Systems, vol. 13 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 19 June 2020

Deniz Ustun

This study aims to evolve an enhanced butterfly optimization algorithm (BOA) with respect to convergence and accuracy performance for numerous benchmark functions, rigorous…

Abstract

Purpose

This study aims to evolve an enhanced butterfly optimization algorithm (BOA) with respect to convergence and accuracy performance for numerous benchmark functions, rigorous constrained engineering design problems and an inverse synthetic aperture radar (ISAR) image motion compensation.

Design/methodology/approach

Adaptive BOA (ABOA) is thus developed by incorporating spatial dispersal strategy to the global search and inserting the fittest solution to the local search, and hence its exploration and exploitation abilities are improved.

Findings

The accuracy and convergence performance of ABOA are well verified via exhaustive comparisons with BOA and its existing variants such as improved BOA (IBOA), modified BOA (MBOA) and BOA with Levy flight (BOAL) in terms of various precise metrics through 15 classical and 12 conference on evolutionary computation (CEC)-2017 benchmark functions. ABOA has outstanding accuracy and stability performance better than BOA, IBOA, MBOA and BOAL for most of the benchmarks. The design optimization performance of ABOA is also evaluated for three constrained engineering problems such as welded beam design, spring design and gear train design and the results are compared with those of BOA, MBOA and BOA with chaos. ABOA, therefore, optimizes engineering designs with the most optimal variables. Furthermore, a validation is performed through translational motion compensation (TMC) of the ISAR image for an aircraft, which includes blurriness. In TMC, the motion parameters such as velocity and acceleration of target are optimally predicted by the optimization algorithms. The TMC results are elaborately compared with BOA, IBOA, MBOA and BOAL between each other in view of images, motion parameter and numerical image measuring metrics.

Originality/value

The outperforming results reflect the optimization and design successes of ABOA which is enhanced by establishing better global and local search abilities over BOA and its existing variants.

Article
Publication date: 15 April 2022

Rahul Shrivastava, Dilip Singh Sisodia and Naresh Kumar Nagwani

In a multi-stakeholder recommender system (MSRS), stakeholders are the multiple entities (consumer, producer, system, etc.) benefited by the generated recommendations…

Abstract

Purpose

In a multi-stakeholder recommender system (MSRS), stakeholders are the multiple entities (consumer, producer, system, etc.) benefited by the generated recommendations. Traditionally, the exclusive focus on only a single stakeholders' (for example, only consumer or end-user) preferences obscured the welfare of the others. Two major challenges are encountered while incorporating the multiple stakeholders' perspectives in MSRS: designing a dedicated utility function for each stakeholder and optimizing their utility without hurting others. This paper proposes multiple utility functions for different stakeholders and optimizes these functions for generating balanced, personalized recommendations for each stakeholder.

Design/methodology/approach

The proposed methodology considers four valid stakeholders user, producer, cast and recommender system from the multi-stakeholder recommender setting and builds dedicated utility functions. The utility function for users incorporates enhanced side-information-based similarity computation for utility count. Similarly, to improve the utility gain, the authors design new utility functions for producer, star-cast and system to incorporate long-tail and diverse items in the recommendation list. Next, to balance the utility gain and generate the trade-off recommendation solution, the authors perform the evolutionary optimization of the conflicting utility functions using NSGA-II. Experimental evaluation and comparison are conducted over three benchmark data sets.

Findings

The authors observed 19.70% of average enhancement in utility gain with improved mean precision, diversity and novelty. Exposure, hit, reach and target reach metrics are substantially improved.

Originality/value

A new approach considers four stakeholders simultaneously with their respective utility functions and establishes the trade-off recommendation solution between conflicting utilities of the stakeholders.

Details

Data Technologies and Applications, vol. 56 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 12 May 2023

Chang-Sup Park

This paper studies a keyword search over graph-structured data used in various fields such as semantic web, linked open data and social networks. This study aims to propose an…

Abstract

Purpose

This paper studies a keyword search over graph-structured data used in various fields such as semantic web, linked open data and social networks. This study aims to propose an efficient keyword search algorithm on graph data to find top-k answers that are most relevant to the query and have diverse content nodes for the input keywords.

Design/methodology/approach

Based on an aggregative measure of diversity of an answer set, this study proposes an approach to searching the top-k diverse answers to a query on graph data, which finds a set of most relevant answer trees whose average dissimilarity should be no lower than a given threshold. This study defines a diversity constraint that must be satisfied for a subset of answer trees to be included in the solution. Then, an enumeration algorithm and a heuristic search algorithm are proposed to find an optimal solution efficiently based on the diversity constraint and an A* heuristic. This study also provides strategies for improving the performance of the heuristic search method.

Findings

The results of experiments using a real data set demonstrate that the proposed search algorithm can find top-k diverse and relevant answers to a query on large-scale graph data efficiently and outperforms the previous methods.

Originality/value

This study proposes a new keyword search method for graph data that finds an optimal solution with diverse and relevant answers to the query. It can provide users with query results that satisfy their various information needs on large graph data.

Details

International Journal of Web Information Systems, vol. 19 no. 1
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 10 March 2022

Jayaram Boga and Dhilip Kumar V.

For achieving the profitable human activity recognition (HAR) method, this paper solves the HAR problem under wireless body area network (WBAN) using a developed ensemble learning…

95

Abstract

Purpose

For achieving the profitable human activity recognition (HAR) method, this paper solves the HAR problem under wireless body area network (WBAN) using a developed ensemble learning approach. The purpose of this study is,to solve the HAR problem under WBAN using a developed ensemble learning approach for achieving the profitable HAR method. There are three data sets used for this HAR in WBAN, namely, human activity recognition using smartphones, wireless sensor data mining and Kaggle. The proposed model undergoes four phases, namely, “pre-processing, feature extraction, feature selection and classification.” Here, the data can be preprocessed by artifacts removal and median filtering techniques. Then, the features are extracted by techniques such as “t-Distributed Stochastic Neighbor Embedding”, “Short-time Fourier transform” and statistical approaches. The weighted optimal feature selection is considered as the next step for selecting the important features based on computing the data variance of each class. This new feature selection is achieved by the hybrid coyote Jaya optimization (HCJO). Finally, the meta-heuristic-based ensemble learning approach is used as a new recognition approach with three classifiers, namely, “support vector machine (SVM), deep neural network (DNN) and fuzzy classifiers.” Experimental analysis is performed.

Design/methodology/approach

The proposed HCJO algorithm was developed for optimizing the membership function of fuzzy, iteration limit of SVM and hidden neuron count of DNN for getting superior classified outcomes and to enhance the performance of ensemble classification.

Findings

The accuracy for enhanced HAR model was pretty high in comparison to conventional models, i.e. higher than 6.66% to fuzzy, 4.34% to DNN, 4.34% to SVM, 7.86% to ensemble and 6.66% to Improved Sealion optimization algorithm-Attention Pyramid-Convolutional Neural Network-AP-CNN, respectively.

Originality/value

The suggested HAR model with WBAN using HCJO algorithm is accurate and improves the effectiveness of the recognition.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 3 April 2023

Sebi Neelamkavil Pappachan

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of…

Abstract

Purpose

This study aims to intend and implement the optimal power flow, where tuning the production cost is done with the inclusion of stochastic wind power and different kinds of flexible AC transmission systems (FACTS) devices. Here, the speed with fitness-based krill herd algorithm (SF-KHA) is adopted for deciding the FACTS devices’ optimal sizing and placement integrated with wind power. Here, the modified SF-KHA optimizes the sizing and location of FACTS devices for attaining the minimum average production cost and real power depletions of the system. Especially, the objective includes reserve cost for overestimation, cost of thermal generation of the wind power, direct cost of scheduled wind power and penalty cost for underestimation. The efficiency of the offered method over several popular optimization algorithms has been done, and the comparison over different algorithms establishes proposed KHA algorithm attains the accurate optimal efficiency for all other algorithms.

Design/methodology/approach

The proposed FACTS devices-based power system with the integration of wind generators is based on the accurate placement and sizing of FACTS devices for decreasing the actual power loss and total production cost of the power system.

Findings

Through the cost function evaluation of the offered SF-KHA, it was noted that the proposed SF-KHA-based power system had secured 13.04% superior to success history-based adaptive differential evolution, 9.09% enhanced than differential evolution, 11.5% better than artificial bee colony algorithm, 15.2% superior to particle swarm optimization and 9.09% improved than flower pollination algorithm.

Originality/value

The proposed power system with the accurate placement and sizing of FACTS devices and wind generator using the suggested SF-KHA was effective when compared with the conventional algorithm-based power systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 23000