Search results

1 – 10 of over 30000
Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 18 April 2024

Vaishali Rajput, Preeti Mulay and Chandrashekhar Madhavrao Mahajan

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired…

Abstract

Purpose

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired algorithms to address complex optimization problems efficiently. These algorithms strike a balance between computational efficiency and solution optimality, attracting significant attention across domains.

Design/methodology/approach

Bio-inspired optimization techniques for feature engineering and its applications are systematically reviewed with chief objective of assessing statistical influence and significance of “Bio-inspired optimization”-based computational models by referring to vast research literature published between year 2015 and 2022.

Findings

The Scopus and Web of Science databases were explored for review with focus on parameters such as country-wise publications, keyword occurrences and citations per year. Springer and IEEE emerge as the most creative publishers, with indicative prominent and superior journals, namely, PLoS ONE, Neural Computing and Applications, Lecture Notes in Computer Science and IEEE Transactions. The “National Natural Science Foundation” of China and the “Ministry of Electronics and Information Technology” of India lead in funding projects in this area. China, India and Germany stand out as leaders in publications related to bio-inspired algorithms for feature engineering research.

Originality/value

The review findings integrate various bio-inspired algorithm selection techniques over a diverse spectrum of optimization techniques. Anti colony optimization contributes to decentralized and cooperative search strategies, bee colony optimization (BCO) improves collaborative decision-making, particle swarm optimization leads to exploration-exploitation balance and bio-inspired algorithms offer a range of nature-inspired heuristics.

Article
Publication date: 8 July 2020

Deniz Ustun, Serdar Carbas and Abdurrahim Toktas

In line with computational technological advances, obtaining optimal solutions for engineering problems has become attractive research topics in various disciplines and real…

Abstract

Purpose

In line with computational technological advances, obtaining optimal solutions for engineering problems has become attractive research topics in various disciplines and real engineering systems having multiple objectives. Therefore, it is aimed to ensure that the multiple objectives are simultaneously optimized by considering them among the trade-offs. Furthermore, the practical means of solving those problems are principally concentrated on handling various complicated constraints. The purpose of this paper is to suggest an algorithm based on symbiotic organisms search (SOS), which mimics the symbiotic reciprocal influence scheme adopted by organisms to live on and breed within the ecosystem, for constrained multi-objective engineering design problems.

Design/methodology/approach

Though the general performance of SOS algorithm was previously well demonstrated for ordinary single objective optimization problems, its efficacy on multi-objective real engineering problems will be decisive about the performance. The SOS algorithm is, hence, implemented to obtain the optimal solutions of challengingly constrained multi-objective engineering design problems using the Pareto optimality concept.

Findings

Four well-known mixed constrained multi-objective engineering design problems and a real-world complex constrained multilayer dielectric filter design problem are tackled to demonstrate the precision and stability of the multi-objective SOS (MOSOS) algorithm. Also, the comparison of the obtained results with some other well-known metaheuristics illustrates the validity and robustness of the proposed algorithm.

Originality/value

The algorithmic performance of the MOSOS on the challengingly constrained multi-objective multidisciplinary engineering design problems with constraint-handling approach is successfully demonstrated with respect to the obtained outperforming final optimal designs.

Article
Publication date: 9 February 2023

Qasim Zaheer, Mir Majaid Manzoor and Muhammad Jawad Ahamad

The purpose of this article is to analyze the optimization process in depth, elaborating on the components of the entire process and the techniques used. Researchers have been…

Abstract

Purpose

The purpose of this article is to analyze the optimization process in depth, elaborating on the components of the entire process and the techniques used. Researchers have been drawn to the expanding trend of optimization since the turn of the century. The rate of research can be used to measure the progress and increase of this optimization procedure. This study is phenomenal to understand the optimization process and different algorithms in addition to their application by keeping in mind the current computational power that has increased the implementation for several engineering applications.

Design/methodology/approach

Two-dimensional analysis has been carried out for the optimization process and its approaches to addressing optimization problems, i.e. computational power has increased the implementation. The first section focuses on a thorough examination of the optimization process, its objectives and the development of processes. Second, techniques of the optimization process have been evaluated, as well as some new ones that have emerged to overcome the above-mentioned problems.

Findings

This paper provided detailed knowledge of optimization, several approaches and their applications in civil engineering, i.e. structural, geotechnical, hydraulic, transportation and many more. This research provided tremendous emerging techniques, where the lack of exploratory studies is to be approached soon.

Originality/value

Optimization processes have been studied for a very long time, in engineering, but the current computational power has increased the implementation for several engineering applications. Besides that, different techniques and their prediction modes often require high computational strength, such parameters can be mitigated with the use of different techniques to reduce computational cost and increase accuracy.

Details

Engineering Computations, vol. 40 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2009

M. Grujicic, G. Arakere, V. Sellappan, J.C. Ziegert and D. Schmueser

Among various efforts pursued to produce fuel efficient vehicles, light weight engineering (i.e. the use of low‐density structurally‐efficient materials, the application of…

Abstract

Among various efforts pursued to produce fuel efficient vehicles, light weight engineering (i.e. the use of low‐density structurally‐efficient materials, the application of advanced manufacturing and joining technologies and the design of highly‐integrated, multi‐functional components/sub‐assemblies) plays a prominent role. In the present work, a multi‐disciplinary design optimization methodology has been presented and subsequently applied to the development of a light composite vehicle door (more specifically, to an inner door panel). The door design has been optimized with respect to its weight while meeting the requirements /constraints pertaining to the structural and NVH performances, crashworthiness, durability and manufacturability. In the optimization procedure, the number and orientation of the composite plies, the local laminate thickness and the shape of different door panel segments (each characterized by a given composite‐lay‐up architecture and uniform ply thicknesses) are used as design variables. The methodology developed in the present work is subsequently used to carry out weight optimization of the front door on Ford Taurus, model year 2001. The emphasis in the present work is placed on highlighting the scientific and engineering issues accompanying multidisciplinary design optimization and less on the outcome of the optimization analysis and the computational resources/architecture needed to support such activity.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 September 2023

Shiyuan Yang, Debiao Meng, Yipeng Guo, Peng Nie and Abilio M.P. de Jesus

In order to solve the problems faced by First Order Reliability Method (FORM) and First Order Saddlepoint Approximation (FOSA) in structural reliability optimization, this paper…

130

Abstract

Purpose

In order to solve the problems faced by First Order Reliability Method (FORM) and First Order Saddlepoint Approximation (FOSA) in structural reliability optimization, this paper aims to propose a new Reliability-based Design Optimization (RBDO) strategy for offshore engineering structures based on Original Probabilistic Model (OPM) decoupling strategy. The application of this innovative technique to other maritime structures has the potential to substantially improve their design process by optimizing cost and enhancing structural reliability.

Design/methodology/approach

In the strategy proposed by this paper, sequential optimization and reliability assessment method and surrogate model are used to improve the efficiency for solving RBDO. The strategy is applied to the analysis of two marine engineering structure cases of ship cargo hold structure and frame ring of underwater skirt pile gripper. The effectiveness of the method is proved by comparing the original design and the optimized results.

Findings

In this paper, the proposed new RBDO strategy is used to optimize the design of the ship cargo hold structure and the frame ring of the underwater skirt pile gripper. According to the results obtained, compared with the original design, the structure of optimization design has better reliability and stability, and reduces the risk of failure. This optimization can also better balance the relationship between performance and cost. Therefore, it is recommended for related RBDO problems in the field of marine engineering.

Originality/value

In view of the limitations of FORM and FOSA that may produce multiple MPPs for a single performance function, the new RBDO strategy proposed in this study provides valuable insights and robust methods for the optimization design of offshore engineering structures. It emphasizes the importance of combining advanced MPP search technology and integrating SORA and surrogate models to achieve more economical and reliable design.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 October 2020

Yongliang Yuan, Shuo Wang, Liye Lv and Xueguan Song

Highly non-linear optimization problems exist in many practical engineering applications. To deal with these problems, this study aims to propose an improved optimization

Abstract

Purpose

Highly non-linear optimization problems exist in many practical engineering applications. To deal with these problems, this study aims to propose an improved optimization algorithm, named, adaptive resistance and stamina strategy-based dragonfly algorithm (ARSSDA).

Design/methodology/approach

To speed up the convergence, ARSSDA applies an adaptive resistance and stamina strategy (ARSS) to conventional dragonfly algorithm so that the search step can be adjusted appropriately in each iteration. In ARSS, it includes the air resistance and physical stamina of dragonfly during a flight. These parameters can be updated in real time as the flight status of the dragonflies.

Findings

The performance of ARSSDA is verified by 30 benchmark functions of Congress on Evolutionary Computation 2014’s special session and 3 well-known constrained engineering problems. Results reveal that ARSSDA is a competitive algorithm for solving the optimization problems. Further, ARSSDA is used to search the optimal parameters for a bucket wheel reclaimer (BWR). The aim of the numerical experiment is to achieve the global optimal structure of the BWR by minimizing the energy consumption. Results indicate that ARSSDA generates an optimal structure of BWR and decreases the energy consumption by 22.428% compared with the initial design.

Originality/value

A novel search strategy is proposed to enhance the global exploratory capability and convergence speed. This paper provides an effective optimization algorithm for solving constrained optimization problems.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 October 2018

Yongquan Zhou, Ying Ling and Qifang Luo

This paper aims to represent an improved whale optimization algorithm (WOA) based on a Lévy flight trajectory and called the LWOA algorithm to solve engineering optimization

Abstract

Purpose

This paper aims to represent an improved whale optimization algorithm (WOA) based on a Lévy flight trajectory and called the LWOA algorithm to solve engineering optimization problems. The LWOA makes the WOA faster, more robust and significantly enhances the WOA. In the LWOA, the Lévy flight trajectory enhances the capability of jumping out of the local optima and is helpful for smoothly balancing exploration and exploitation of the WOA. It has been successfully applied to five standard engineering optimization problems. The simulation results of the classical engineering design problems and real application exhibit the superiority of the LWOA algorithm in solving challenging problems with constrained and unknown search spaces when compared to the basic WOA algorithm or other available solutions.

Design/methodology/approach

In this paper, an improved WOA based on a Lévy flight trajectory and called the LWOA algorithm is represented to solve engineering optimization problems.

Findings

It has been successfully applied to five standard engineering optimization problems. The simulation results of the classical engineering design problems and real application exhibit the superiority of the LWOA algorithm in solving challenging problems with constrained and unknown search spaces when compared to the basic WOA algorithm or other available solutions.

Originality value

An improved WOA based on a Lévy flight trajectory and called the LWOA algorithm is first proposed.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 April 2018

Qi Zhou, Xinyu Shao, Ping Jiang, Tingli Xie, Jiexiang Hu, Leshi Shu, Longchao Cao and Zhongmei Gao

Engineering system design and optimization problems are usually multi-objective and constrained and have uncertainties in the inputs. These uncertainties might significantly…

Abstract

Purpose

Engineering system design and optimization problems are usually multi-objective and constrained and have uncertainties in the inputs. These uncertainties might significantly degrade the overall performance of engineering systems and change the feasibility of the obtained solutions. This paper aims to propose a multi-objective robust optimization approach based on Kriging metamodel (K-MORO) to obtain the robust Pareto set under the interval uncertainty.

Design/methodology/approach

In K-MORO, the nested optimization structure is reduced into a single loop optimization structure to ease the computational burden. Considering the interpolation uncertainty from the Kriging metamodel may affect the robustness of the Pareto optima, an objective switching and sequential updating strategy is introduced in K-MORO to determine (1) whether the robust analysis or the Kriging metamodel should be used to evaluate the robustness of design alternatives, and (2) which design alternatives are selected to improve the prediction accuracy of the Kriging metamodel during the robust optimization process.

Findings

Five numerical and engineering cases are used to demonstrate the applicability of the proposed approach. The results illustrate that K-MORO is able to obtain robust Pareto frontier, while significantly reducing computational cost.

Practical implications

The proposed approach exhibits great capability for practical engineering design optimization problems that are multi-objective and constrained and have uncertainties.

Originality/value

A K-MORO approach is proposed, which can obtain the robust Pareto set under the interval uncertainty and ease the computational burden of the robust optimization process.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 August 2020

Ngoc Le Chau, Ngoc Thoai Tran and Thanh-Phong Dao

Compliant mechanism has been receiving a great interest in precision engineering. However, analytical methods involving their behavior analysis is still a challenge because there…

Abstract

Purpose

Compliant mechanism has been receiving a great interest in precision engineering. However, analytical methods involving their behavior analysis is still a challenge because there are unclear kinematic behaviors. Especially, design optimization for compliant mechanisms becomes an important task when the problem is more and more complex. Therefore, the purpose of this study is to design a new hybrid computational method. The hybridized method is an integration of statistics, numerical method, computational intelligence and optimization.

Design/methodology/approach

A tensural bistable compliant mechanism is used to clarify the efficiency of the developed method. A pseudo model of the mechanism is designed and simulations are planned to retrieve the data sets. Main contributions of design variables are analyzed by analysis of variance to initialize several new populations. Next, objective functions are transformed into the desirability, which are inputs of the fuzzy inference system (FIS). The FIS modeling is aimed to initialize a single-combined objective function (SCOF). Subsequently, adaptive neuro-fuzzy inference system is developed to modeling a relation of the main geometrical parameters and the SCOF. Finally, the SCOF is maximized by lightning attachment procedure optimization algorithm to yield a global optimality.

Findings

The results prove that the present method is better than a combination of fuzzy logic and Taguchi. The present method is also superior to other algorithms by conducting non-parameter tests. The proposed computational method is a usefully systematic method that can be applied to compliant mechanisms with complex structures and multiple-constrained optimization problems.

Originality/value

The novelty of this work is to make a new approach by combining statistical techniques, numerical method, computational intelligence and metaheuristic algorithm. The feasibility of the method is capable of solving a multi-objective optimization problem for compliant mechanisms with nonlinear complexity.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 30000