Search results

1 – 10 of over 2000
Article
Publication date: 9 April 2024

Ahmed Shehata and Metwaly Eldakar

Social engineering is crucial in today’s digital landscape. As technology advances, malicious individuals exploit human judgment and trust. This study explores how age, education…

Abstract

Purpose

Social engineering is crucial in today’s digital landscape. As technology advances, malicious individuals exploit human judgment and trust. This study explores how age, education and occupation affect individuals’ awareness, skills and perceptions of social engineering.

Design/methodology/approach

A quantitative research approach was used to survey a diverse demographic of Egyptian society. The survey was conducted in February 2023, and the participants were sourced from various Egyptian social media pages covering different topics. The collected data was analyzed using descriptive and inferential statistics, including independent samples t-test and ANOVA, to compare awareness and skills across different groups.

Findings

The study revealed that younger individuals and those with higher education tend to research social engineering more frequently. Males display a higher level of awareness but score lower in terms of social and psychological consequences as well as types of attacks when compared to females. The type of attack cannot be predicted based on age. Higher education is linked to greater awareness and ability to defend against attacks. Different occupations have varying levels of awareness, skills, and psychosocial consequences. The study emphasizes the importance of increasing awareness, education and implementing cybersecurity measures.

Originality/value

This study’s originality lies in its focus on diverse Egyptian demographics, innovative recruitment via social media, comprehensive exploration of variables, statistical rigor, practical insights for cybersecurity education and diversity in educational and occupational backgrounds.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Open Access
Article
Publication date: 20 March 2023

Mohamed A. Shahat, Sulaiman M. Al-Balushi and Mohammed Al-Amri

The purpose of the current study is to assess Omani teachers’ performance on tasks related to the stages of engineering design. To achieve this, data from an engineering design…

Abstract

Purpose

The purpose of the current study is to assess Omani teachers’ performance on tasks related to the stages of engineering design. To achieve this, data from an engineering design test was used, and demographic variables that are correlated with this performance were identified.

Design/methodology/approach

This descriptive study employed a cross-sectional design and the collection of quantitative data. A sample of preservice science teachers from Sultan Qaboos University (SQU) (n = 70) participated in this study.

Findings

Findings showed low and moderate levels of proficiency related to the stages of engineering design. Differences between males and females in terms of performance on engineering design tasks were found, with females scoring higher overall on the assessment. Biology preservice teachers scored higher than teachers from the other two majors (physics and chemistry) in two subscales. There were also differences between teachers studying in the Bachelor of Science (BSc) program and the teacher qualification diploma (TQD) program.

Originality/value

This study provides an overview, in an Arab setting, of preservice science teachers’ proficiency with engineering design process (EDP) tasks. It is hoped that the results may lead to improved instruction in science teacher training programs in similar contexts. Additionally, this research demonstrates how EDP competency relates to preservice teacher gender, major and preparation program. Findings from this study will contribute to the growing body of research investigating the strengths and shortcomings of teacher education programs in relation to science, technology, engineering and mathematics (STEM) education.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 16 February 2024

Khameel B. Mustapha, Eng Hwa Yap and Yousif Abdalla Abakr

Following the recent rise in generative artificial intelligence (GenAI) tools, fundamental questions about their wider impacts have started to reverberate around various…

Abstract

Purpose

Following the recent rise in generative artificial intelligence (GenAI) tools, fundamental questions about their wider impacts have started to reverberate around various disciplines. This study aims to track the unfolding landscape of general issues surrounding GenAI tools and to elucidate the specific opportunities and limitations of these tools as part of the technology-assisted enhancement of mechanical engineering education and professional practices.

Design/methodology/approach

As part of the investigation, the authors conduct and present a brief scientometric analysis of recently published studies to unravel the emerging trend on the subject matter. Furthermore, experimentation was done with selected GenAI tools (Bard, ChatGPT, DALL.E and 3DGPT) for mechanical engineering-related tasks.

Findings

The study identified several pedagogical and professional opportunities and guidelines for deploying GenAI tools in mechanical engineering. Besides, the study highlights some pitfalls of GenAI tools for analytical reasoning tasks (e.g., subtle errors in computation involving unit conversions) and sketching/image generation tasks (e.g., poor demonstration of symmetry).

Originality/value

To the best of the authors’ knowledge, this study presents the first thorough assessment of the potential of GenAI from the lens of the mechanical engineering field. Combining scientometric analysis, experimentation and pedagogical insights, the study provides a unique focus on the implications of GenAI tools for material selection/discovery in product design, manufacturing troubleshooting, technical documentation and product positioning, among others.

Details

Interactive Technology and Smart Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-5659

Keywords

Article
Publication date: 14 March 2024

Pengkun Liu, Zhewen Yang, Jing Huang and Ting-Kwei Wang

The purpose of this study is to scrutinize the influence of individual learning styles on the effectiveness of augmented reality (AR)-based learning in structural engineering…

Abstract

Purpose

The purpose of this study is to scrutinize the influence of individual learning styles on the effectiveness of augmented reality (AR)-based learning in structural engineering. There has been a lack of research examining the correlation between learning efficiency and learning style, particularly in the context of quantitatively assessing the efficacy of AR in structural engineering education.

Design/methodology/approach

Using Kolb’s experiential learning theory (ELT), a model that emphasizes learning through experience, students from the construction management department are assigned four learning styles (converging, assimilating, diverging and accommodating). Performance data were gathered, appraised, and compared through the three dimensions from the Knowledge, Attitude and Practices (KAP) survey model across four categories of Kolb’s learning styles in both text-graph (TG)-based and AR-based learning settings.

Findings

The findings indicate that AR-based materials positively impact structural engineering education by enhancing overall learning performance more than TG-based materials. It is also found that the learning style has a profound influence on learning effectiveness, with AR technology markedly improving the information retrieval processes, particularly for converging and assimilating learners, then diverging learners, with a less significant impact on accommodating learners.

Originality/value

These results corroborate prior research analyzing learners' outcomes with hypermedia and informational learning systems. It was found that learners with an “abstract” approach (convergers and assimilators) outperform those with a “concrete” approach (divergers and accommodators). This research emphasizes the importance of considering learning styles before integrating technologies into civil engineering education, thereby assisting software developers and educational institutions in creating more effective teaching materials tailored to specific learning styles.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 April 2024

Roberth Andres Villazon Montalvan, Annibal Affonso Neto and Clóvis Neumann

In today’s highly competitive global business environment, there is a growing demand for professionals who possess well-developed soft skills. Such abilities include flexibility…

Abstract

Purpose

In today’s highly competitive global business environment, there is a growing demand for professionals who possess well-developed soft skills. Such abilities include flexibility, effective communication and other skills. Soft skills are personal attributes and qualities that are more closely related to the emotional side of human beings. Individuals must cultivate and hone soft skills during their undergraduate studies. These skills, also known as interpersonal or non-technical skills, are essential to complement hard skills and pave the way for a thriving career trajectory. Soft skills are developed over the course of one’s career and are indispensable in establishing a strong, professional presence in the corporate or academic realm. The field of engineering is no exception in this regard, and the business approach during the engineering course is of significant relevance. By acquiring soft skills, engineering graduates will become competitive and adaptable professionals capable of handling the current and future challenges of the job market. The purpose of this study is to investigate the soft skills that students perceive as being better developed during their business classrooms in the engineering course and identify areas for improvement in the business education process.

Design/methodology/approach

The research method consisted in four different phases from variables identification to statistical analyses. Then, as part of this approach a structured questionnaire was administered at the end of the engineering course, where students rated their perception of the degree of development of each of the soft skills covered in the course on a scale of zero to ten. The collected data were analysed using multivariate analysis techniques, including factorial analysis.

Findings

The results of the study demonstrate that the set of skills acquired by individuals in business classrooms pursuing a degree in industrial engineering is in high demand by potential employers. Such skills are deemed essential for the successful operation of businesses in modern-day industries. The findings of this research validate the significant role that industrial engineering students play in fulfilling the requirements of the job market and pave the way to meaningful insights on how to approach this topic during the business education process in engineering courses.

Practical implications

The findings bring about significant insights for national educational councils and ministries, universities and educational stakeholders in the process of updating, rethinking and implementing new curricula criteria in higher education, particularly in the Latin American context.

Originality/value

This paper enriches the literature by assessing the development of soft skills of engineering students in the Latin American context. The research reinforces the importance of developing soft skills aligned with those required for the context of current and future labour markets.

Details

Journal of International Education in Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-469X

Keywords

Article
Publication date: 21 February 2024

Aitor Ruiz de la Torre Acha, Rosa María Rio Belver, Javier Fernandez Aguirrebeña and Christophe Merlo

This study explores the impact of new technologies, such as simulation and virtual reality, on the pedagogy and learning of engineering students. It aims to compare the…

Abstract

Purpose

This study explores the impact of new technologies, such as simulation and virtual reality, on the pedagogy and learning of engineering students. It aims to compare the effectiveness of these digital tools against traditional teaching methods in enhancing student learning experiences.

Design/methodology/approach

Utilizing a quantitative research approach, the study involved third-year engineering students from the “Production Management” course at the School of Engineering of Vitoria-Gasteiz. Data were collected through an ad hoc questionnaire and analyzed using SPSS software, focusing on student satisfaction, challenges in adopting new technologies and the evolving roles of students and teachers.

Findings

The research highlighted several key aspects. Firstly, it identified the need for adapting teaching methods to incorporate new technologies effectively. Secondly, the integration of simulation and virtual reality was found to facilitate a deeper understanding of real-world problems, as students could engage with these issues in a simulated, virtual environment. Finally, the study emphasized the importance of pedagogical approaches that leverage these technologies to increase student involvement and motivation. The results suggest a positive impact of digital tools on the learning process in engineering education.

Research limitations/implications

The study’s scope was limited to one course within a single institution, suggesting the need for broader research across various disciplines and educational settings.

Originality/value

This research offers valuable insights into the integration of simulation and virtual reality in engineering education, underscoring their potential to enhance the learning experience and knowledge acquisition among students.

Details

Education + Training, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0040-0912

Keywords

Open Access
Article
Publication date: 6 February 2024

Tiprawee Tongtummachat, Attasak Jaree and Nattee Akkarawatkhoosith

This article presents our experience in implementing the assessment for learning process (AfL) to enhance the teaching–learning quality, which has faced numerous challenges…

Abstract

Purpose

This article presents our experience in implementing the assessment for learning process (AfL) to enhance the teaching–learning quality, which has faced numerous challenges impacting educational quality. The effectiveness of this technique is demonstrated through a case study conducted in a core course of chemical engineering.

Design/methodology/approach

The article shares insights into the systematic course design and planning processes that were discussed and developed through AfL practices. Significant emphasis is placed on implementing formative and summative student self-assessment surveys as simple yet effective methods to meet this purpose. Quantitative data were collected and analyzed over three consecutive academic years (2020–2022) using various statistical parameters such as percentage, interquartile range and the program’s numerical goal (%G).

Findings

The AfL process via formative and summative surveys could significantly and effectively improve teaching–learning quality. These findings assist educators in identifying appropriate teaching methods and recognizing areas of weakness and strength, thereby facilitating continuous improvement in the teaching–learning quality. Validation methods, including quizzes and numerical grades, were employed to practically verify the outcome obtained from the questionnaires.

Practical implications

The AfL techniques demonstrated in this study can be directly implemented or adapted for various educational fields to enhance the teaching–learning quality.

Originality/value

The practical implementation of AfL in an engineering context has hardly been reported, particularly in chemical engineering. This work represents the practical implementation of AfL to enhance engineering field education.

Details

Journal of Research in Innovative Teaching & Learning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2397-7604

Keywords

Open Access
Article
Publication date: 8 February 2024

Van Thien Ngo

This study aims to examine the perceptions of students about learning science and physics using the engineering design process (EDP).

Abstract

Purpose

This study aims to examine the perceptions of students about learning science and physics using the engineering design process (EDP).

Design/methodology/approach

The study employed a mixed-methods research design: The quantitative session features a pre–post-test control group study. In the qualitative aspect, the study conducted semistructured interviews for data collection. In the experimental group, the flipped classroom (FC) model and an instructional design are combined to design, develop and implement a physics course using the steps of the EDP, while the conventional method was applied to the control group. The respondents are students of the Department of Mechanical Engineering at Cao Thang Technical College in Vietnam for the academic year 2022–2023. The control and experimental groups are composed of 80 students each. An independent sample Mann–Whitney U test is applied to the quantitative data, while thematic analysis is employed for the qualitative data.

Findings

The results demonstrate a statistically significant difference between the experimental and control groups in terms of perceptions about learning science and physics using the EDP, which, when combined with a FC, enhances physics learning for engineering students.

Research limitations/implications

This study implemented the EDP in teaching physics to first-year engineering students in the Department of Mechanical Engineering using the combined FC and instructional design models. The results revealed that a difference exists in the perception of the students in terms of integrating the EDP into learning physics between the experimental and control groups. The experimental group, which underwent the EDP, obtained better results than did the control group, which used the conventional method. The results demonstrated that the EDP encouraged the students to explore and learn new content knowledge by selecting the appropriate solution to the problem. The EDP also helped them integrate new knowledge and engineering skills into mechanical engineering. This research also introduced a new perspective on physics teaching and learning using the EDP for engineering college students.

Practical implications

The research findings are important for teaching and learning physics using EDP in the context of engineering education. Thus, educators can integrate the teaching and learning of physics into the EDP to motivate and engage student learning.

Originality/value

Using the EDP combined with a FC designed under stages of the analyze, design, develop, implement and evaluate (ADDIE) model has enhanced the learning of physics for engineering college students.

Details

Journal of Research in Innovative Teaching & Learning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2397-7604

Keywords

Article
Publication date: 27 December 2021

Riddhi Thavi, Rujuta Jhaveri, Vaibhav Narwane, Bhaskar Gardas and Nima Jafari Navimipour

This paper aims to provide a literature review on the cloud-based platforms for the education sectors. The several aspects of cloud computing adoption in education…

Abstract

Purpose

This paper aims to provide a literature review on the cloud-based platforms for the education sectors. The several aspects of cloud computing adoption in education, remote/distance learning and the application of cloud-based design and manufacturing (CBDM) have been studied and theorised.

Design/methodology/approach

A four-step methodology was adopted to analyse and categorise the papers obtained through various search engines. Out of 429 research articles, 72 papers were shortlisted for the detailed analysis.

Findings

Many factors that influence cloud computing technology adoption in the education sector have been identified in this paper. The research findings on several research items have been tabulated and discussed. Based on the theoretical research done on cloud computing for education, cloud computing for remote/distance learning and CBDM, cloud computing could enhance the educational systems in mainly developing countries and improve the scope for remote/distance learning.

Research limitations/implications

This study is limited to papers published only in the past decade from 2011 to 2020. Besides, this review was unable to include journal articles published in different languages. Nevertheless, for the effective teaching and learning process, this paper could help understand the importance and improve the process of adopting cloud computing concepts in educational universities and platforms.

Originality/value

This study is a novel one as a research review constituting cloud computing applications in education and extended for remote/distance learning and CBDM, which have not been studied in the existing knowledge base.

Article
Publication date: 25 October 2022

Yi Tan, Wenyu Xu, Keyu Chen, Chunyan Deng and Peng Wang

At present, teaching methods based on 2D drawings are still commonly used for educating students on the location of steel reinforcement bars in concrete. However, traditional…

Abstract

Purpose

At present, teaching methods based on 2D drawings are still commonly used for educating students on the location of steel reinforcement bars in concrete. However, traditional teaching methods have limitations as students can find it difficult to understand 2D drawings. This study aims to develop an interactive and collaborative augmented reality environment (ICARE) using augmented reality (AR) technology to improve students' engagement in learning.

Design/methodology/approach

This study develops an ICARE prototype, which is organized into two stages: (1) The augmented teaching environment comprising of models and interactive components; (2) The AR collaborative application which uses Photon Unity Networking (PUN) plugin and Azure spatial anchors cloud service. The AR-based teaching environment runs with Universal Windows Platform (UWP) to enable development in the HoloLens 2 through Microsoft Visual Studio.

Findings

An experimental study was conducted, where 60 students were divided into three groups employing Drawings-based, building information modeling (BIM)-based and AR-based methods for teaching. After the test, the three groups of students were requested to complete a questionnaire. According to the analysis of the experimental results, the ICARE can improve students' comprehension, memory of learned materials and their ability to read and understand steel reinforcement drawings improving the quality of teaching, especially interactivity and engagement.

Originality/value

As illustrated in the experiments, the developed ICARE has outstanding performance over conventional approaches in civil engineering courses that can improve students' comprehension and memory of knowledge and their ability to read and understand steel bar drawings. This study provides empirical evidence that AR is a promising technology that can be integrated with traditional classroom instruction and can improve students' comprehension and memory of knowledge and their ability to read and understand steel bar drawings.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 2000