Search results

1 – 10 of 110
To view the access options for this content please click here
Article
Publication date: 7 April 2015

Wolfgang Narzt

This paper aims to develop generic strategies for improving energy consumption for location sensing on smartphones and compares the results of iOS and Android…

Abstract

Purpose

This paper aims to develop generic strategies for improving energy consumption for location sensing on smartphones and compares the results of iOS and Android implementations. Mobile smartphone applications utilizing localization sensors (e.g. Global Positioning System) collectively face the problem of battery draining. Energy consumption is at a peak when applications permanently and stolidly use those sensors, even if their excessive exploitation is avoidable (e.g. when the user carrying the device is not moving).

Design/methodology/approach

Considering contextual parameters affecting localization of mobile devices (i.e. incorporating movement probability, speed, etc.) is the basic idea for developing a strategy capable of reducing energy consumption for location determination on mobile devices. This paper explains the paradigm and draws the architecture for a generic context-based energy saving strategy for mobile location-based services.

Findings

The paper reveals the positive implications in terms of energy consumption measured in the course of exhaustive tests for iOS and Android devices and discusses accuracy issues and potential workarounds, especially focusing on Apple’s M7 motion co-processor for consuming accelerometer data on a low energy level.

Originality/value

The paper identifies and measures energy issues for location determination on smartphones and presents a generic and heuristic concept for saving energy.

Details

International Journal of Pervasive Computing and Communications, vol. 11 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

To view the access options for this content please click here
Article
Publication date: 21 June 2013

Sharmistha Chatterjee, Jukka K. Nurminen and Matti Siekkinen

Detecting and tracking the position of a mobile user has become one of the important subjects in many mobile applications. Such applications use location based services…

Abstract

Purpose

Detecting and tracking the position of a mobile user has become one of the important subjects in many mobile applications. Such applications use location based services (LBS) for learning and training user movements in different places (cities, markets, airports, stations) along different modes of transport (bus, car, cycle, walk). To date, GPS is the key solution to all LBS but repeated GPS querying is not economical in terms of the battery life of the mobile phone. The purpose of this paper is to study how cheap and energy‐efficient air pressure sensors measuring the altitude could be used, as a complement to the dominant GPS system. The location detection and route tracking task is then accomplished by matching the collected altitude traces with the altitude curves of stored data to find the best matching routes.

Design/methodology/approach

The cornerstone of the authors' approach is that a huge amount of route data, collected with GPS devices, is available in various cloud services. In order to evaluate the mechanism of matching routes with altitude data, the authors build a prototype system of crowd‐sourced database containing only altitude data of different routes along different modes of transport. How accurately this stored altitude data could be matched with the collected altitude traces is the key question of this study.

Findings

Results show that, within a certain level of accuracy, older repeated routes can be detected from newly tracked altitude traces. Further, the level of accuracy varies depending on the length of path traversed, route curvature, speed of travel and sensor used for tracking.

Originality/value

The new contribution in this paper is to propose an alternative route detection mechanism which minimizes the use of GPS query. This concept will help in retrieving the GPS coordinates of already traversed routes stored in a large database by matching them with currently tracked altitude curves.

To view the access options for this content please click here
Article
Publication date: 5 August 2019

Dilong Chen, Qiang Lu, Dongliang Peng, Ke Yin, Chaoliang Zhong and Ting Shi

The purpose of this paper is to propose a receding horizon control approach for the problem of locating unknown wireless sensor networks by using a mobile robot.

Abstract

Purpose

The purpose of this paper is to propose a receding horizon control approach for the problem of locating unknown wireless sensor networks by using a mobile robot.

Design/methodology/approach

A control framework is used and consists of two levels: one is a decision level, while the other is a control level. In the decision level, a spatiotemporal probability occupancy grid method is used to give the possible positions of all nodes in sensor networks, where the posterior probability distributions of sensor nodes are estimated by capturing the transient signals. In the control level, a virtual robot is designed to move along the edge of obstacles such that the problem of obstacle avoidance can be transformed into a coordination problem of multiple robots. On the basis of the possible positions of sensor nodes and virtual robots, a receding horizon control approach is proposed to control mobile robots to locate sensor nodes, where a temporary target position method is utilized to avoid several special obstacles.

Findings

When the number of obstacles increases, the average localization errors between the actual locations and the estimated locations significantly increase.

Originality/value

The proposed control approach can guide the mobile robot to avoid obstacles and deal with the corresponding dynamical events so as to locate all sensor nodes for an unknown wireless network.

Details

Assembly Automation, vol. 39 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 12 May 2020

Nabeena Ameen, Najumnissa Jamal and Arun Raj

With the rapid growth of wireless sensor networks (WSNs), they have become an integral and substantial part of people's life. As such WSN stands as an assuring outlook…

Abstract

Purpose

With the rapid growth of wireless sensor networks (WSNs), they have become an integral and substantial part of people's life. As such WSN stands as an assuring outlook, but because of sensor's resource limitations and other prerequisites, optimal dual route discovery becomes an issue of concern. WSN along with central sink node is capable of handling wireless transmission, thus optimizing the network's lifetime by selecting the dual path. The major problem confronted in the application of security mechanisms in WSNs is resolving the issues amid reducing consumption of resources and increases security.

Design/methodology/approach

According to the proposed system, two metrics, namely, path length and packets delivery ratio are incorporated for identifying dual routes amid the source and destination. Thereafter by making use of the distance metric, the optimal dual route is chosen and data transmission is carried out amid the nodes. With the usage of the recommended routing protocol high packet delivery ratio is achieved with reduced routing overhead and low average end to end delay. It is clearly portrayed in the simulation output that the proposed on demand dual path routing protocol surpasses the prevailing routing protocol. Moreover, security is achieved make use of in accord the data compression reduces the size of the data. With the help of dual path, mathematical model of Finite Automata Theory is derived to transmit data from source to destination. Finite Automata Theory comprises Deterministic Finite Automata (DFA) that is being utilized for Dual Path Selection. In addition, data transition functions are defined for each input stage. In this proposed work, another mathematical model is 10; introduced to efficiently choose an alternate path between a receiver and transmitter for data transfer with qualified node as relay node using RR Algorithm. It also includes Dynamic Mathematical Model for Node Localization to improve the precision in location estimation using Node Localization Algorithm. As a result a simulator is built and various scenarios are elaborated for comparing the performance of the recommended dual path routing protocol with respect to the prevailing ones.

Findings

Reliability and fault-tolerance: The actual motive in utilizing the approach of multipath routing in sensor network was to offer path resilience in case of a node or link failures thus ascertaining reliable transmission of data. Usually in a fault tolerant domain, when the sensor node is unable to forward the data packets to the sink, alternative paths can be utilized for recovering its data packets during the failure of any link/node. Load balancing: Load balancing involves equalizing energy consumption of all the existing nodes, thereby degrading them together. Load balancing via clustering improves network scalability. The network's lifetime as well as reliability can be extended if varied energy level's nodes exist in sensor node. Quality of service (QoS): Improvement backing of quality of service with respect to the data delivery ratio, network throughput and end-to-end latency stands very significant in building multipath routing protocols for various network types. Reduced delay: There is a reduced delay in multipath routing since the backup routes are determined at the time of route discovery. Bandwidth aggregation: By dividing the data toward the same destination into multiple streams (by routing all to a separate path) can aggregate the effective bandwidth. The benefit being that, in case a node possesses many links with low bandwidth, it can acquire a bandwidth which is more compared to the individual link.

Research limitations/implications

Few more new algorithms can be used to compare the QoS parameters.

Practical implications

Proposed mechanism with feedback ascertains improvised delivery ratio compared to the single path protocol since in case of link failure, the protocol has alternative route. In case there are 50 nodes in the network, the detection mechanism yields packet delivery of 95% and in case there are 100 nodes, the packet delivery is lowered to 89%. It is observed that the packet rate in the network is more for small node range. When the node count is 200, the packet ratio is low, which is lowered to 85%. With a node count of 400, the curve depicts the value of 87%. Hence, even with a decrease in value, it is superior than the existing protocols. The average end-to-end delay represents the transmission delay of the data packets that have been successfully delivered as depicted in Figure 6 and Table 3. The recommended system presents the queue as well as the propagation delay from the source to destination. The figure depicts that when compared to the single path protocol, the end-to-end delay can be reduced via route switching. End-to-end delay signifies the time acquired for the delay in the receival of the the retransmitted packet by each node. The comparison reveals that the delay was lower compared to the existing ones in the WSN. Proposed protocol aids in reducing consumption of energy in transmitter, receiver and various sensors. Comparative analysis of energy consumptions of the sensor in regard to the recommended system must exhibit reduced energy than the prevailing systems.

Originality/value

On demand dual path routing protocol. Hence it is verified that the on demand routing protocol comprises DFA algorithms determines dual path. Here mathematical model for routing between two nodes with relay node is derived using RR algorithm to determine alternate path and thus reduce energy consumption. Another dynamic mathematical model for node localization is derived using localization algorithm. For transmitting data with a secure and promising QoS in the WSNs, the routing optimization technique has been introduced. The simulation software environment follows the DFA. The simulation yields in improvised performance with respect to packet delivery ratio, throughput, average end-to-end delay and routing overhead. So, it is proved that the DFA possesses the capability of optimizing the routing algorithms which facilitates the multimedia applications over WSNs.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

To view the access options for this content please click here
Article
Publication date: 22 June 2012

Kerri Stone and Tracy Camp

Localization is a fundamental problem in wireless sensor networks. In many applications, sensor location information is critical for data processing and meaning. While the…

Abstract

Purpose

Localization is a fundamental problem in wireless sensor networks. In many applications, sensor location information is critical for data processing and meaning. While the global positioning system (GPS) can be used to determine mote locations with meter precision, the high hardware cost and energy requirements of GPS receivers often prohibit the ubiquitous use of GPS for location estimates. This high cost (in terms of hardware price and energy consumption) of GPS has motivated researchers to develop localization protocols that determine mote locations based on cheap hardware and localization algorithms. The purpose of this paper is to present a comprehensive review of wireless sensor network localization techniques, and provide a detailed overview for several distance‐based localization algorithms.

Design/methodology/approach

To provide a detailed summary of wireless sensor network localization algorithms, the authors outline a tiered classification system in which they first classify algorithms as distributed, distributed‐centralized, or centralized. From this broad classification, the paper then further categorizes localization algorithms using their protocol techniques. By utilizing this classification system, the authors are able to provide a survey of several wireless sensor network localization algorithms and summarize relative algorithm performance based on the algorithms' classification.

Findings

There are numerous localization algorithms available and the performance of these algorithms is dependent on network configuration, environmental variables, and the ranging method implemented. When selecting a localization algorithm, it is important to understand basic algorithm operation and expected performance. This tier‐based algorithm classification system can be used to gain a high‐level understanding of algorithm performance and energy consumption based on known algorithm characteristics.

Originality/value

Localization is a widely researched field and given the quantity of localization algorithms that currently exist, it is impossible to present a complete review of every published algorithm. Instead, the paper presents a holistic view of the current state of localization research and a detailed review of ten representative distance‐based algorithms that have diverse characteristics and methods. This review presents a new classification structure that may help researchers understand, at a high‐level, the expected performance and energy consumption of algorithms not explicitly addressed by our work.

Details

International Journal of Pervasive Computing and Communications, vol. 8 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

To view the access options for this content please click here
Article
Publication date: 16 January 2017

Chirihane Gherbi, Zibouda Aliouat and Mohamed Benmohammed

In particular, this paper aims to systematically analyze a few prominent wireless sensor network (WSN) clustering routing protocols and compare these different approaches…

Abstract

Purpose

In particular, this paper aims to systematically analyze a few prominent wireless sensor network (WSN) clustering routing protocols and compare these different approaches according to the taxonomy and several significant metrics.

Design/methodology/approach

In this paper, the authors have summarized recent research results on data routing in sensor networks and classified the approaches into four main categories, namely, data-centric, hierarchical, location-based and quality of service (QoS)-aware, and the authors have discussed the effect of node placement strategies on the operation and performance of WSNs.

Originality/value

Performance-controlled planned networks, where placement and routing must be intertwined and everything from delays to throughput to energy requirements is well-defined and relevant, is an interesting subject of current and future research. Real-time, deadline guarantees and their relationship with routing, mac-layer, duty-cycles and other protocol stack issues are interesting issues that would benefit from further research.

Details

Sensor Review, vol. 37 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 18 May 2020

Haojie Zhang, Yudong Zhang and Tiantian Yang

As wheeled mobile robots find increasing use in outdoor applications, it becomes more important to reduce energy consumption to perform more missions efficiently with…

Abstract

Purpose

As wheeled mobile robots find increasing use in outdoor applications, it becomes more important to reduce energy consumption to perform more missions efficiently with limit energy supply. The purpose of this paper is to survey the current state-of-the-art on energy-efficient motion planning (EEMP) for wheeled mobile robots.

Design/methodology/approach

The use of wheeled mobile robots has been increased to replace humans in performing risky missions in outdoor applications, and the requirement of motion planning with efficient energy consumption is necessary. This study analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present. The dynamic constraints play a key role in EEMP problem, which derive the power model related to energy consumption. The surveyed approaches differ in the used steering mechanisms for wheeled mobile robots, in assumptions on the structure of the environment and in computational requirements. The comparison among different EEMP methods is proposed in optimal, computation time and completeness.

Findings

According to lots of literature in EEMP problem, the research results can be roughly divided into online real-time optimization and offline optimization. The energy consumption is considered during online real-time optimization, which is computationally expensive and time-consuming. The energy consumption model is used to evaluate the candidate motions offline and to obtain the optimal energy consumption motion. Sometimes, this optimization method may cause local minimal problem and even fail to track. Therefore, integrating the energy consumption model into the online motion planning will be the research trend of EEMP problem, and more comprehensive approach to EEMP problem is presented.

Research limitations/implications

EEMP is closely related to robot’s dynamic constraints. This paper mainly surveyed in EEMP problem for differential steered, Ackermann-steered, skid-steered and omni-directional steered robots. Other steering mechanisms of wheeled mobile robots are not discussed in this study.

Practical implications

The survey of performance of various EEMP serves as a reference for robots with different steering mechanisms using in special scenarios.

Originality/value

This paper analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 28 June 2011

Reinhard Müllner and Andreas Riener

Conventional street lighting systems in areas with a low frequency of passersby are online most of the night without purpose. The consequence is that a large amount of…

Abstract

Purpose

Conventional street lighting systems in areas with a low frequency of passersby are online most of the night without purpose. The consequence is that a large amount of power is wasted meaninglessly. With the broad availability of flexible‐lighting technology like light‐emitting diode lamps and everywhere available wireless internet connection, fast reacting, reliably operating, and power‐conserving street lighting systems become reality. The purpose of this work is to describe the Smart Street Lighting (SSL) system, a first approach to accomplish the demand for flexible public lighting systems.

Design/methodology/approach

This work presents the SSL system, a framework developed for a dynamic switching of street lamps based on pedestrians' locations and desired safety (or “fear”) zones. In the developed system prototype, each pedestrian is localized via his/her smartphone, periodically sending location and configuration information to the SSL server. For street lamp control, each and every lamppost is equipped with a ZigBee‐based radio device, receiving control information from the SSL server via multi‐hop routing.

Findings

This research paper confirms that the application of the proposed SSL system has great potential to revolutionize street lighting, particularly in suburban areas with low‐pedestrian frequency. More important, the broad utilization of SSL can easily help to overcome the regulatory requirement for CO2 emission reduction by switching off lampposts whenever they are not required.

Research limitations/implications

The paper discusses in detail the implementation of SSL, and presents results of its application on a small scale. Experiments have shown that objects like trees can interrupt wireless communication between lampposts and that inaccuracy of global positioning system position detection can lead to unexpected lighting effects.

Originality/value

This paper introduces the novel SSL framework, a system for fast, reliable, and energy efficient street lamp switching based on a pedestrian's location and personal desires of safety. Both safety zone definition and position estimation in this novel approach is accomplished using standard smartphone capabilities. Suggestions for overcoming these issues are discussed in the last part of the paper.

Details

International Journal of Pervasive Computing and Communications, vol. 7 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

To view the access options for this content please click here
Book part
Publication date: 29 January 2013

Zbigniew Smoreda, Ana-Maria Olteanu-Raimond and Thomas Couronné

Purpose — In this chapter, we will review several alternative methods of collecting data from mobile phones for human mobility analysis. We propose considering cellular…

Abstract

Purpose — In this chapter, we will review several alternative methods of collecting data from mobile phones for human mobility analysis. We propose considering cellular network location data as a useful complementary source for human mobility research and provide case studies to illustrate the advantages and disadvantages of each method.

Methodology/approach — We briefly describe cellular phone network architecture and the location data it can provide, and discuss two types of data collection: active and passive localization. Active localization is something like a personal travel diary. It provides a tool for recording positioning data on a survey sample over a long period of time. Passive localization, on the other hand, is based on phone network data that are automatically recorded for technical or billing purposes. It offers the advantage of access to very large user populations for mobility flow analysis of a broad area.

Findings — We review several alternative methods of collecting data from mobile phone for human mobility analysis to show that cellular network data, although limited in terms of location precision and recording frequency, offer two major advantages for studying human mobility. First, very large user samples – covering broad geographical areas – can be followed over a long period of time. Second, this type of data allows researchers to choose a specific data collection methodology (active or passive), depending on the objectives of their study. The big mobile phone localization datasets have provided a new impulse for the interdisciplinary research in human mobility.

Originality/value of chapter — We propose considering cellular network location data as a useful complementary source for transportation research and provide case studies to illustrate the advantages and disadvantages of each proposed method. Mobile phones have become a kind of “personal sensor” offering an ever-increasing amount of location data on mobile phone users over long time periods. These data can thus provide a framework for a comprehensive and longitudinal study of temporal dynamics, and can be used to capture ephemeral events and fluctuations in day-to-day mobility behavior offering powerful tools to transportation research, urban planning, or even real-time city monitoring.

Details

Transport Survey Methods
Type: Book
ISBN: 978-1-78-190288-2

Keywords

Content available
Article
Publication date: 26 October 2020

Mohammed S. Al-kahtani, Lutful Karim and Nargis Khan

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for…

Abstract

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for an effective incidence response and disaster recovery framework. Existing sensor routing protocols are mostly not effective in such disaster recovery applications as the networks are affected (destroyed or overused) in disasters such as earthquake, flood, Tsunami and wildfire. These protocols require a large number of message transmissions to reestablish the clusters and communications that is not energy efficient and result in packet loss. This paper introduces ODCR - an energy efficient and reliable opportunistic density clustered-based routing protocol for such emergency sensor applications. We perform simulation to measure the performance of ODCR protocol in terms of network energy consumptions, throughput and packet loss ratio. Simulation results demonstrate that the ODCR protocol is much better than the existing TEEN, LEACH and LORA protocols in term of these performance metrics.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of 110