Search results

1 – 10 of 728
Article
Publication date: 13 March 2017

Anthony Deloge Ariyanayagam and Mahen Mahendran

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel…

Abstract

Purpose

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel frame (LSF) walls exposed to realistic design fire curves.

Design/methodology/approach

The energy-based time equivalent method was developed based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of the standard fire time – temperature curve. The FRR predicted by the energy-based method for LSF wall configurations exposed to both rapid and prolonged fires were compared with those from fire design rules and finite element analyses (FEA).

Findings

The proposed energy method can be used to obtain the FRR of LSF walls in case of prolonged fires and cannot be used for rapid fires as the computed FRRs were higher than the results from FEA and fire design rules due to the influence of thermal bowing and its magnification effects at a high temperature gradient across the studs for rapid fires.

Originality/value

The energy-based time equivalent method was developed based on equal fire severity principles. Three different wall configurations were considered and exposed to both rapid and prolonged fires. The FRR obtained from the energy-based method were compared with fire design rules and FEA results to assess the use of the energy-based method to predict the FRR of LSF walls.

Details

Journal of Structural Fire Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 31 October 2018

Hadiseh Karimaei, Seyed Mostafa Hosseinalipour and Ramin Ghorbani

To estimate mean droplet diameter (MDD) of a spray, three different numerical models were used in this paper. One of them is investigation of the surface instability of the liquid…

Abstract

Purpose

To estimate mean droplet diameter (MDD) of a spray, three different numerical models were used in this paper. One of them is investigation of the surface instability of the liquid sheet producing from an injector.

Design/methodology/approach

First, the linear instability (LI) analysis introduced by Ibrahim (2006) is implemented. Second, the improved (ILI) analysis already introduced by the present authors is used. ILI analysis is different from the prior analysis, so that the instability of hollow-cone liquid sheet with different cone angles is investigated rather than a cylindrical liquid sheet. It means that besides the tangential and axial movements, radial movements of the liquid sheet and gas streams have been considered in the governing equations. Beside LI theory as a momentum-based approach, a new model as a theoretical energy-based (TEB) model based on the energy conservation law is proposed in this paper.

Findings

Based on the energy-based approach, atomization occurs because of kinetic energy loss. The resulting formulation reveals that the MDD is inversely proportional to the atomization efficiency and liquid Weber number.

Research limitations/implications

The results of these three models are compared with the available experimental data. Prediction obtained by the proposed TEB model is in reasonable agreement with the result of experiment.

Practical implications

The results of these three models are compared with the available experimental data. Prediction of the proposed energy-based theoretical model is in very good agreement with experimental data.

Originality/value

Comparison between the results of new model, experimental data, other previous methods show that it can be used as a new simple and fast model to achieve good estimation of spray MDD.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 September 2023

Reza Esmailzadeh-Shahri and Sassan Eshghi

Nonlinear dynamic analyses are employed for seismic collapse risk evaluation of existing steel moment frame buildings. The standards, such as ASCE 41-17, often define collapse…

Abstract

Purpose

Nonlinear dynamic analyses are employed for seismic collapse risk evaluation of existing steel moment frame buildings. The standards, such as ASCE 41-17, often define collapse thresholds based on plastic deformations; however, the collapse process involves several factors, and plastic deformation is only one of them. An energy-based approach employs deformation and resistance responses simultaneously, so it can consider various factors such as excessive deformation, stiffness and resistance degradation, and low-cycle fatigue as cumulative damage for seismic assessment. In this paper, an efficient energy-based methodology is proposed to estimate the collapse threshold responses of steel moment frame buildings.

Design/methodology/approach

This methodology uses a new criterion based on the energy balance concept and computes the structural responses for different seismic hazard levels. Meanwhile, a pre-processing phase is introduced to find the records that lead to the collapse of buildings. Furthermore, the proposed methodology can detect failure-prone hinges with a straightforward probability-based definition.

Findings

The findings show that the proposed methodology can estimate reasonably accurate responses against the results of the past experiment on the collapse threshold. Based on past studies, ASCE 41-17 results differ from experimental results and are even overly conservative in some cases. The authors believe that the proposed methodology can improve it. In addition, the failure-prone hinges detected by the proposed methodology are similar to the predicted collapse mechanism of three mid-rise steel moment frame buildings.

Originality/value

In the proposed methodology, new definitions based on energy and probability are employed to find out the structural collapse threshold and failure-prone hinges. Also, comparing the proposed methodology results against the experimental outcomes shows that this methodology efficiently predicts the collapse threshold responses.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 July 2013

Adam Warzecha and Witold Mazgaj

The aim of the paper is to present the approximation methods of the magnetizing characteristics of the salient pole synchronous machines with the fundamental MMF harmonics.

Abstract

Purpose

The aim of the paper is to present the approximation methods of the magnetizing characteristics of the salient pole synchronous machines with the fundamental MMF harmonics.

Design/methodology/approach

The energy based approach is used to formulate a set of the functions approximating the magnetic flux linkages versus an equivalent magnetizing current in the circuit model of the synchronous machine. The estimation of the approximation functions parameters is based on the results of the field calculations.

Findings

The identification of the approximation functions is effective and significantly simpler on the basis of the magnetic field co‐energy function, than on the basis of the magnetic flux linkages.

Research limitations/implications

The magnetic field co‐energy function determined by FEM is sufficient for simplified calculations of the magnetic parameters occurring in the circuit models of the electrical machines with nonlinear core.

Practical implications

The paper provides guidance for the circuit modelling of the multi‐pole generators and motors under conditions of magnetic saturation.

Originality/value

A paper has succeeded in determining the internal magnetic characteristics of the synchronous machine with a salient pole rotor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 April 2018

Daicong Da, Xiangyang Cui, Kai Long, Guanxin Huang and Guangyao Li

In pure material design, the previous research has indicated that lots of optimization factors such as used algorithm and parameters have influence on the optimal solution. In…

Abstract

Purpose

In pure material design, the previous research has indicated that lots of optimization factors such as used algorithm and parameters have influence on the optimal solution. In other words, there are multiple local minima for the topological design of materials for extreme properties. Therefore, the purpose of this study is to attempt different or more concise algorithms to find much wider possible solutions to material design. As for the design of material microstructures for macro-structural performance, the previous studies test algorithms on 2D porous or composite materials only, it should be demonstrated for 3D problems to reveal numerical and computational performance of the used algorithm.

Design/methodology/approach

The presented paper is an attempt to use the strain energy method and the bi-directional evolutionary structural optimization (BESO) algorithm to tailor material microstructures so as to find the optimal topology with the selected objective functions. The adoption of the strain energy-based approach instead of the homogenization method significantly simplifies the numerical implementation. The BESO approach is well suited to the optimal design of porous materials, and the generated topology structures are described clearly which makes manufacturing easy.

Findings

As a result, the presented method shows high stability during the optimization process and requires little iterations for convergence. A number of interesting and valid material microstructures are obtained which verify the effectiveness of the proposed optimization algorithm. The numerical examples adequately consider effects of initial guesses of the representative unit cell (RUC) and of the volume constraints of solid materials on the final design. The presented paper also reveals that the optimized microstructure obtained from pure material design is not the optimal solution any more when considering the specific macro-structural performance. The optimal result depends on various effects such as the initial guess of RUC and the size dimension of the macrostructure itself.

Originality/value

This paper presents a new topology optimization method for the optimal design of 2D and 3D porous materials for extreme elastic properties and macro-structural performance. Unlike previous studies, the presented paper tests the proposed optimization algorithm for not only 2D porous material design but also 3D topology optimization to reveal numerical and computational performance of the used algorithm. In addition, some new and interesting material microstructural topologies have been obtained to provide wider possible solutions to the material design.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 December 2018

Fatemeh Ebadi, Mohammad Mardaneh and Akbar Rahideh

This paper aims to show the proposed energy method for inductance calculation is valid for any number of poles, phases and any winding layout.

Abstract

Purpose

This paper aims to show the proposed energy method for inductance calculation is valid for any number of poles, phases and any winding layout.

Design/methodology/approach

A two-dimensional (2-D) analytical energy-based approach is presented to calculate self-inductances and mutual inductances of brushless surface-mounted permanent-magnet machines.

Findings

The proposed calculation procedure is valid for brushless permanent-magnet machines with slotted or slotless stator structure. Comparisons between energy method and flux linkage method are presented based on simulation and experimental results. It shows that the energy method has an excellent agreement with the result obtained from finite element method (FEM) and experimental study.

Originality/value

This paper compares energy-based method with flux linkage method and FEM for inductance calculations in slotless and slotted permanent-magnet motors. The relations for inductance calculation are presented which are obtained based on 2-D analytical representation of magnetic field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 April 2022

Qing-Yun Deng, Shun-Peng Zhu, Jin-Chao He, Xue-Kang Li and Andrea Carpinteri

Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain…

Abstract

Purpose

Engineering components/structures with geometric discontinuities normally bear complex and variable loads, which lead to a multiaxial and random/variable amplitude stress/strain state. Hence, this study aims how to effectively evaluate the multiaxial random/variable amplitude fatigue life.

Design/methodology/approach

Recent studies on critical plane method under multiaxial random/variable amplitude loading are reviewed, and the computational framework is clearly presented in this paper.

Findings

Some basic concepts and latest achievements in multiaxial random/variable amplitude fatigue analysis are introduced. This review summarizes the research status of four main aspects of multiaxial fatigue under random/variable amplitude loadings, namely multiaxial fatigue criterion, method for critical plane determination, cycle counting method and damage accumulation criterion. Particularly, the latest achievements of multiaxial random/variable amplitude fatigue using critical plane methods are classified and highlighted.

Originality/value

This review attempts to provide references for further research on multiaxial random/variable amplitude fatigue and to promote the development of multiaxial fatigue from experimental research to practical engineering application.

Details

International Journal of Structural Integrity, vol. 13 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 August 2011

Yaser Jafarian, Mohammad H. Baziar, Mohammad Rezania and Akbar A. Javadi

In this paper, the peak kinetic energy density (KED) of soil particles during earthquake excitation is used as an intensity measure for the evaluation of liquefaction potential…

Abstract

Purpose

In this paper, the peak kinetic energy density (KED) of soil particles during earthquake excitation is used as an intensity measure for the evaluation of liquefaction potential under field conditions. The paper seeks to discuss this measure.

Design/methodology/approach

Using centrifuge tests data, it is shown that seismic pore water pressure buildup is proportional to cumulative KED at a particular soil depth. Linear relationships are found between cumulative kinetic energy and corresponding cumulative strain energy. To consider the effect of soil amplification, several equivalent linear ground response analyses are performed and the results are used to derive an equation for depth reduction factor of peak kinetic energy density. Two separate databases of liquefaction case histories are used in order to validate the proposed model. The performance of the proposed model is compared with a number of commonly used shear stress‐based liquefaction assessment methods. Finally, the logistic regression method is employed to obtain probabilistic boundary curves based on the present model. Parametric study of the proposed probabilistic model is carried out to verify its agreement with the previous methods.

Findings

It has been shown that the kinetic energy model works satisfactorily in classifying liquefied and non‐liquefied cases compared with the existing recommendations of shear stress‐based criterion. The results of the probabilistic kinetic energy model are in good agreement with those of previous studies and show a reasonable trend with respect to the variations of fines content and effective overburden pressure. The proposed model can be as used an alternative approach for assessment of liquefaction potential.

Originality/value

These findings make a sound basis for the development of a kinetic energy‐based method for assessment of liquefaction potential.

Details

Engineering Computations, vol. 28 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 August 2015

John Ogbemhe and Khumbulani Mpofu

– The purpose of this paper is to review the progress made in arc welding automation using trajectory planning, seam tracking and control methodologies.

1046

Abstract

Purpose

The purpose of this paper is to review the progress made in arc welding automation using trajectory planning, seam tracking and control methodologies.

Design/methodology/approach

This paper discusses key issues in trajectory planning towards achieving full automation of arc welding robots. The identified issues in trajectory planning are real-time control, optimization methods, seam tracking and control methodologies. Recent research is considered and brief conclusions are drawn.

Findings

The major difficulty towards realizing a fully intelligent robotic arc welding system remains an optimal blend and good understanding of trajectory planning, seam tracking and advanced control methodologies. An intelligent trajectory tracking ability is strongly required in robotic arc welding, due to the positional errors caused by several disturbances that prevent the development of quality welds. An exciting prospect will be the creation of an effective hybrid optimization technique which is expected to lead to new scientific knowledge by combining robotic systems with artificial intelligence.

Originality/value

This paper illustrates the vital role played by optimization methods for trajectory design in arc robotic welding automation, especially the non-gradient approaches (those based on certain characteristics and behaviour of biological, molecular, swarm of insects and neurobiological systems). Effective trajectory planning techniques leading to real-time control and sensing systems leading to seam tracking have also been studied.

Details

Industrial Robot: An International Journal, vol. 42 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 March 2022

Jason Martinez and Ann Jeffers

A methodology for producing an elevated-temperature tension stiffening model is presented.

Abstract

Purpose

A methodology for producing an elevated-temperature tension stiffening model is presented.

Design/methodology/approach

The energy-based stress–strain model of plain concrete developed by Bažant and Oh (1983) was extended to the elevated-temperature domain by developing an analytical formulation for the temperature-dependence of the fracture energy Gf. Then, an elevated-temperature tension stiffening model was developed based on the modification of the proposed elevated-temperature tension softening model.

Findings

The proposed tension stiffening model can be used to predict the response of composite floor slabs exposed to fire with great accuracy, provided that the global parameters TS and Kres are adequately calibrated against global structural response data.

Originality/value

In a finite element analysis of reinforced concrete, a tension stiffening model is required as input for concrete to account for actions such as bond slip and tension stiffening. However, an elevated-temperature tension stiffening model does not exist in the research literature. An approach for developing an elevated-temperature tension stiffening model is presented.

1 – 10 of 728