Search results

1 – 10 of over 6000
Article
Publication date: 15 February 2024

D.S.N. Senarathna, K.G.A.S. Waidyasekara and S.S.C.G. Vidana

The Heating, Ventilation and Air Conditioning (HVAC) system is a significant energy consumer in built environments, and the building energy consumption could be minimised by…

Abstract

Purpose

The Heating, Ventilation and Air Conditioning (HVAC) system is a significant energy consumer in built environments, and the building energy consumption could be minimised by optimising HVAC controls. Hence, this paper aims to investigate the applicability of Variable Refrigerant Flow (VRF) air conditioning systems for optimising the indoor comfort of buildings in Sri Lanka.

Design/methodology/approach

To address the research aim, the quantitative approach following the survey research strategy was deployed. Data collected through questionnaires were analysed using descriptive statistical tools, including Mean Rating (MR), Relative Important Index (RII) and Standard Deviation (SD).

Findings

The findings revealed that VRF systems are popularly used in Sri Lankan apartment buildings. Furthermore, energy efficiency and comfort were recognised as the most significant top-ranked benefits, while ventilation issues and initial cost were recognised as significant challenges. Moreover, the allocation of trained technicians and provision of proper ventilation through a Dedicated Outdoor Air System (DOAS) were highlighted as applicable mitigation strategies for the identified challenges in VRFs.

Practical implications

The study recommends VRF systems as a suitable technology to ensure energy efficiency, reduce GHG emissions and achieve climate performance within the built environment. The opportunities for adopting VRF systems for developing countries could be explored based on the research findings. The identified challenges would assist the design engineers and facilities professionals to devise suitable strategies to mitigate issues of VRF systems in developing countries.

Originality/value

This research provides empirical proof of the energy efficiency and comfort aspects of VRFs. The study has explored and recommended VRF technology as a beneficial application to overcome the persistent energy crisis in developing countries.

Details

Property Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 28 February 2023

Helen Dion and Martin Evans

The issue of energy efficiency is becoming increasingly prevalent globally due to factors such as the expansion of the population, economic growth and excessive consumption that…

1197

Abstract

Purpose

The issue of energy efficiency is becoming increasingly prevalent globally due to factors such as the expansion of the population, economic growth and excessive consumption that is not sustainable in the long run. Additionally, healthcare facilities and hospitals are facing challenges as their operational costs continue to rise. The research aim is to develop strategic frameworks for managing green hospitals, towards energy efficiency and corporate governance in hospitals and healthcare facilities.

Design/methodology/approach

This research employs a qualitative case study approach, with a sample of ten hospitals examined through interviews with senior management, executives and healthcare facilities managers. Relevant data was also collected from literature and analysed through critical appraisal and content analysis. The research methodology is based on the use of grounded theory research methodologies to build theories from case studies.

Findings

The research developed three integrated conceptual strategic frameworks for managing hospitals and healthcare facilities towards energy efficiency, green hospital initiatives and corporate governance. The research also outlined the concepts of green hospitals and energy efficiency management systems and best practices based on the conclusions drawn from the investigated case studies.

Research limitations/implications

The study is limited to the initiatives and experiences of the healthcare facilities studied in the Middle East and North Africa (MENA) region.

Originality/value

The research findings, conclusions, recommendations and proposed frameworks and concepts contribute significantly to the existing body of knowledge. This research also provides recommendations for hospital managers and policymakers on how to effectively implement and manage energy efficiency initiatives in healthcare facilities.

Details

Benchmarking: An International Journal, vol. 31 no. 2
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 10 October 2022

Kurt Wurthmann

This study aims to provide and illustrate the application of a framework for conducting techno-economic analyses (TEA) of early-stage designs for net-zero water and energy…

Abstract

Purpose

This study aims to provide and illustrate the application of a framework for conducting techno-economic analyses (TEA) of early-stage designs for net-zero water and energy, single-family homes that meet affordable housing criteria in diverse locations.

Design/methodology/approach

The framework is developed and applied in a case example of a TEA of four designs for achieving net zero-water and energy in an affordable home in Saint Lucie County, Florida.

Findings

Homes built and sold at current market prices, using combinations of well versus rainwater harvesting (RWH) systems and grid-tied versus hybrid solar photovoltaic (PV) systems, can meet affordable housing criteria for moderate-income families, when 30-year fixed-rate mortgages are at 2%–3%. As rates rise to 6%, unless battery costs drop by 40% and 60%, respectively, homes using hybrid solar PV systems combined with well versus RWH systems cease to meet affordable housing criteria. For studied water and electricity usage and 6% interest rates, only well and grid-tied solar PV systems provide water and electricity at costs below current public supply prices.

Originality/value

This article provides a highly adaptable framework for conducting TEAs in diverse locations for designs of individual net-zero water and energy affordable homes and whole subdivisions of such homes. The framework includes a new technique for sizing storage tanks for residential RWH systems and provides a foundation for future research at the intersection of affordable housing development and residential net-zero water and energy systems design.

Details

International Journal of Housing Markets and Analysis, vol. 17 no. 2
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 31 May 2023

Blerina Bylykbashi and Risto Vasil Filkoski

The purpose of this study is optimization of existing PV system and by making the optimization to reach the heights energy performance from the system.

Abstract

Purpose

The purpose of this study is optimization of existing PV system and by making the optimization to reach the heights energy performance from the system.

Design/methodology/approach

The methodology used in this work is analytical as well as software using PV*SOL premium software. Both methods are used to achieve a more realistic analysis of the results achieved at the end of the work.

Findings

After analyzing the optimization of the PV system in terms of certain atmospheric conditions, it is clear that the optimization of the system is necessary. Through the optimization of the systems, a better performance of the system is achieved, as well as in the case in question, it affects the increase of the energy generated annually up to 500 kWh.

Originality/value

This work is the original work of the author, which represents a part of the topic of the doctorate.

Details

International Journal of Innovation Science, vol. 16 no. 2
Type: Research Article
ISSN: 1757-2223

Keywords

Article
Publication date: 4 August 2022

Jianjin Yue, Wenrui Li, Jian Cheng, Hongxing Xiong, Yu Xue, Xiang Deng and Tinghui Zheng

The calculation of buildings’ carbon footprint (CFP) is an important basis for formulating energy-saving and emission-reduction plans for building. As an important building type…

Abstract

Purpose

The calculation of buildings’ carbon footprint (CFP) is an important basis for formulating energy-saving and emission-reduction plans for building. As an important building type, there is currently no model that considers the time factor to accurately calculate the CFP of hospital building throughout their life cycle. This paper aims to establish a CFP calculation model that covers the life cycle of hospital building and considers time factor.

Design/methodology/approach

On the basis of field and literature research, the basic framework is built using dynamic life cycle assessment (DLCA), and the gray prediction model is used to predict the future value. Finally, a CFP model covering the whole life cycle has been constructed and applied to a hospital building in China.

Findings

The results applied to the case show that the CO2 emission in the operation stage of the hospital building is much higher than that in other stages, and the total CO2 emission in the dynamic and static analysis operation stage accounts for 83.66% and 79.03%, respectively; the difference of annual average emission of CO2 reached 28.33%. The research results show that DLCA is more accurate than traditional static life cycle assessment (LCA) when measuring long-term objects such as carbon emissions in the whole life cycle of hospital building.

Originality/value

This research established a carbon emission calculation model that covers the life cycle of hospital building and considered time factor, which enriches the research on carbon emission of hospital building, a special and extensive public building, and dynamically quantifies the resource consumption of hospital building in the life cycle. This paper provided a certain reference for the green design, energy saving, emission reduction and efficient use of hospital building, obviously, the limitation is that this model is only applicable to hospital building.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 April 2023

Pedro Bento, Sílvio Mariano, Pedro Carvalho, Maria do Rosário Calado and José Pombo

This study is a targeted review of some of the major changes in European regulation that guided energy policy decisions in the Iberian Peninsula and how they may have aggravated…

Abstract

Purpose

This study is a targeted review of some of the major changes in European regulation that guided energy policy decisions in the Iberian Peninsula and how they may have aggravated the problem of lack of flexibility. This study aims to assess some of the proposed short-term solutions to address this issue considering the underlying root causes and suggests a different course of action, that in turn, could help alleviate future market strains.

Design/methodology/approach

The evolution of the most important (macro) energy and price-related variables in both Portugal and Spain is assessed using market and grid operator data. In addition, the authors present critical viewpoints on some of the most recent EU and national regulation changes (official document analysis).

Findings

The Iberian energy policy and regulatory agenda has successfully promoted a rapid adoption of renewables (main goal), although with insufficient diversification of generation technologies. The compulsory closings of thermal plants and an increased tax (mainly carbon) added pressure toward more environmentally friendly thermal power plants. However, inevitably, this curbed the bidding price competitiveness of these producers in an already challenging market framework. Moving forward, decisions must be based on “a bigger picture” that does not neglect system flexibility and security of supply and understands the specificities of the Iberian market and its generation portfolio.

Originality/value

This work provides an original account of unprecedented spikes in energy prices in 2021, specifically in the Iberian electricity market. This acute situation worries consumers, industry and governments. Underlining the instability of the market prices, for the first time, this study discusses how some of the most important regulatory changes, and their perception and absorption by involved parties, contributed to the current environment. In addition, this study stresses that if flexibility is overlooked, the overall purpose of having an affordable and reliable system is at risk.

Details

International Journal of Energy Sector Management, vol. 18 no. 2
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 28 February 2023

Parveen Kumar, Pankaj Kumar and Vaibhav Aggarwal

This study aims to examine the determinants of adoption intention toward the rooftop solar photovoltaic (RSPV) systems among residents of peri-urban villages of Gurugram, Haryana…

Abstract

Purpose

This study aims to examine the determinants of adoption intention toward the rooftop solar photovoltaic (RSPV) systems among residents of peri-urban villages of Gurugram, Haryana, India. This study also analyzes the impact of the adoption of RSPV systems on carbon neutrality from a behavioral perspective.

Design/methodology/approach

Data was collected using a self-administrated structured questionnaire from 208 male villagers (195 usable) of 22 villages using the purposive sampling technique.

Findings

Results revealed that relative advantage, followed by simplicity, trialability, observability and compatibility, positively and significantly impact villagers’ attitude toward adopting RSPV systems in their homes. Perceived severity and perceived vulnerability significantly influence the perceived behavioral control of villagers toward adopting the RSPV systems. The results show villagers’ attitudes, subjective norms and perceived behavioral control are the essential predictors of their adoption intention of the RSPV systems. Most notably, carbon neutrality was significantly affected by villagers’ adoption intention of RSPV systems as the renewable energy source in their homes.

Originality/value

The findings of this study provide that innovation attributes are important factors in shaping the adoption intentions of customers toward RSPV systems. This study is also the extent of previous studies measuring customers’ perception of adopting renewable energy in developed and emerging countries worldwide.

Details

International Journal of Energy Sector Management, vol. 18 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Book part
Publication date: 26 March 2024

Sanjeet Singh, Geetika Madaan and Amrinder Singh

Purpose: The availability of resilient energy infrastructure and services is crucial to achieving sustainable development goals. However, defined and trustworthy definitions of…

Abstract

Purpose: The availability of resilient energy infrastructure and services is crucial to achieving sustainable development goals. However, defined and trustworthy definitions of resilience exist solely for engineering and energy systems, particularly in the industrialised world or metropolitan systems. However, no universally accepted definition considers the distinctive characteristics of rural regions in developing economies. To define resilience for rural power systems in developing countries, this chapter synthesises many perspectives on resilience, energy systems, and rural environments.

Methodology: It draws on extensive literature assessments on resilience, particularly concerning energy systems and rural areas, as well as other pre-existing frameworks.

Findings: To account for the unique challenges of electricity supply in rural developing nations, a comprehensive ‘Rural Power System Resilience Framework’ is introduced, including technical, economic, and social resilience.

Social implications: To better understand the elements contributing to the stability of electricity grids in developing nations and rural areas, this resilience framework may be utilised by global markets, system owners and operators, government officials, non-governmental organisations, and communities.

Originality: Through establishing this framework, this study sets the path for developing suitable and ‘effective resilience standards’ tailored for implementation in these rural areas, with the ultimate goal of facilitating the fulfilment of achieving domestic and worldwide sustainability objectives.

Details

The Framework for Resilient Industry: A Holistic Approach for Developing Economies
Type: Book
ISBN: 978-1-83753-735-8

Keywords

Article
Publication date: 18 September 2023

Mingyu Wu, Che Fai Yeong, Eileen Lee Ming Su, William Holderbaum and Chenguang Yang

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption…

Abstract

Purpose

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption models, energy-efficient locomotion, hardware energy consumption, optimization in path planning and scheduling methods, and to suggest future research directions.

Design/methodology/approach

The systematic literature review (SLR) identified 244 papers for analysis. Research articles published from 2010 onwards were searched in databases including Google Scholar, ScienceDirect and Scopus using keywords and search criteria related to energy and power management in various robotic systems.

Findings

The review highlights the following key findings: batteries are the primary energy source for AMRs, with advances in battery management systems enhancing efficiency; hybrid models offer superior accuracy and robustness; locomotion contributes over 50% of a mobile robot’s total energy consumption, emphasizing the need for optimized control methods; factors such as the center of mass impact AMR energy consumption; path planning algorithms and scheduling methods are essential for energy optimization, with algorithm choice depending on specific requirements and constraints.

Research limitations/implications

The review concentrates on wheeled robots, excluding walking ones. Future work should improve consumption models, explore optimization methods, examine artificial intelligence/machine learning roles and assess energy efficiency trade-offs.

Originality/value

This paper provides a comprehensive analysis of energy efficiency in AMRs, highlighting the key findings from the SLR and suggests future research directions for further advancements in this field.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Book part
Publication date: 4 March 2024

Diana Baus and Damir Krešić

This chapter examines the potential of solar energy for the development of sustainable tourism in Croatia. Tourism is an important economic activity in the Croatian economy due to…

Abstract

This chapter examines the potential of solar energy for the development of sustainable tourism in Croatia. Tourism is an important economic activity in the Croatian economy due to the mild climate and many sunny days. Solar energy photovoltaic and thermal systems can help to support sustainable tourism, as well as increase employment and cooperation between local and national governments. This study compares best practices in solar energy for the Mediterranean countries of Italy, Spain, Cyprus, and Greece. The Mediterranean Basin is a strategic development area for the European Union, and solar energy will help to maintain its stability and high-quality standards of living.

1 – 10 of over 6000