Search results

1 – 10 of over 15000
Article
Publication date: 10 August 2022

Xing Yao, Shao-Chao Ma, Ying Fan, Lei Zhu and Bin Su

The ongoing urbanization and decarbonization require deployment of energy storage in the urban energy system to integrate large-scale variable renewable energy (VRE) into the…

Abstract

Purpose

The ongoing urbanization and decarbonization require deployment of energy storage in the urban energy system to integrate large-scale variable renewable energy (VRE) into the power grids. The cost reductions of batteries enable private entities to invest energy storage for energy management whose operating strategy may differ from traditional storage facilities. This study aims to investigate the impacts of energy storage on the power system with different operation strategies. Two strategies are modeled through a simulation-based regional economic power dispatch model. The profit-oriented strategy denotes the storage system operated by private entities for price arbitrage, and the nonprofit-oriented strategy denotes the storage system dispatched by an independent system operator (ISO) for the whole power system optimization. A case study of Jiangsu, China is conducted. The results show that the profit-oriented strategy only has a very limited impact on the cost reductions of power system and may even increase the cost for consumers. While nonprofit-oriented energy storage performs a positive effect on the system cost reduction. CO2 emission reduction can only be achieved under a high VRE scenario for energy storage. Integrating energy storage into the power system may increase CO2 emissions in the near term. In addition, the peak-valley spread is crucial to trigger operations of profit-oriented energy storage, and the profitability of energy storage operator is observed to be decreasing with the total storage capacity. This study provides new insights for the energy management in the smart city, and the modeling framework can be applied to regions with different resource endowments.

Design/methodology/approach

The authors characterize two battery storage operating strategies of profit- and nonprofit-oriented by adopting a simulation-based economic dispatch model. A simulation from 36 years of hourly weather data of wind and solar output from case study of Jiangsu, China is conducted.

Findings

The results show that the profit-oriented strategy only has a very limited impact on the cost reductions of power system and may even increase the cost for consumers. While nonprofit-oriented energy storage performs a positive effect on the system cost reduction. CO2 emission reduction can only be achieved under high VRE scenario for energy storage. Integrating energy storage into the power system may increase CO2 emissions in the near term. In addition, the peak-valley spread is crucial to trigger operations of profit-oriented energy storage, and the profitability of energy storage operator is observed to be decreasing with the total storage capacity.

Originality/value

This study provides new insights for the energy management in the smart city, and the modeling framework can be applied to regions with different resource endowments.

Details

Industrial Management & Data Systems, vol. 122 no. 10
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 2 October 2018

Sarah Krömer and Nadine Gatzert

The purpose of this paper is to study investments in renewable energy projects which are jointly operated with an energy storage system, with particular focus on risk-return…

Abstract

Purpose

The purpose of this paper is to study investments in renewable energy projects which are jointly operated with an energy storage system, with particular focus on risk-return characteristics from the perspective of private and institutional investors, taking into account resource risk, energy price risk, inflation risk and policy risk.

Design/methodology/approach

To this end, this paper presents a stochastic discounted cash flow model which is then applied to a wind farm with a pumped hydro storage system.

Findings

The results show that energy storage systems have the potential to increase the expected present value of future investment cash flows and to hedge (downside) risk. However, to realize this potential, storage systems have to be cost-effective in terms of fixed operation, maintenance, staffing and insurance costs. Also, several key factors are identified which have a considerable influence on the performance of the operation strategy.

Originality/value

The paper contributes to the literature by conducting an analysis of (downside) risk and return of renewable energy investments with a storage system taking into account stochastic policy, resource, inflation and energy price risk.

Details

International Journal of Energy Sector Management, vol. 12 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 10 August 2015

Uroš Stritih, Halime Paksoy, Bekir Turgut, Eneja Osterman, Hunay Evliya and Vincenc Butala

Bilateral project with Slovenia and Turkey with the title thermal energy storage for efficient utilization of solar energy was the basis for this paper. The paper aims to discuss…

2860

Abstract

Purpose

Bilateral project with Slovenia and Turkey with the title thermal energy storage for efficient utilization of solar energy was the basis for this paper. The paper aims to discuss this issue.

Design/methodology/approach

The paper is the review of solar thermal storage technologies with examples of use in Slovenia and Turkey.

Findings

The authors have found out that compact and cost effective thermal energy storage are essential.

Research limitations/implications

Research on the field of thermal energy storage in Slovenia and Turkey is presented.

Practical implications

The paper presents solar systems in Slovenia and Turkey.

Originality/value

The paper gives information about the sustainable energy future on the basis of solar energy.

Details

Management of Environmental Quality: An International Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1477-7835

Keywords

Book part
Publication date: 5 June 2023

Mehdi Ebrahimi, David S-K. Ting and Rupp Carriveau

Sustainable development calls for a larger share of intermittent renewable energy. To mitigate this intermittency, Compressed Air Energy Storage (CAES) technology was introduced…

Abstract

Sustainable development calls for a larger share of intermittent renewable energy. To mitigate this intermittency, Compressed Air Energy Storage (CAES) technology was introduced. This technology can be made more sustainable by recovering the heat of the compression phase and reusing it during the discharge phase, resulting in an adiabatic CAES without the need for burning of fossil fuels. The key process parameters of CAES are temperature, pressure ratios, and the mass flow rates of air and thermal fluids. The variation in these parameters during the charge and discharge phases significantly influences the performance of CAES plants. In this chapter, the transient thermodynamic behavior of the system under various operating conditions is analyzed and the impact of heat recovery on the discharge phase energy efficiency, power generation, and CO2 emissions is studied. Simulations are carried out over the air pressure range from 2,500 to 7,000 kPa for a 65 MW system over a five-hour discharge duration. It is also assumed that the heat loss in the air storage and the hot thermal fluid tank is insignificant and standby duration does not impact the status of the system. This result shows that the system exergy and the generated power are more sensitive to pressure change at higher pressures. This work also reveals that every 10°C increase on the temperature of the stored air can lead to a 0.83% improvement in the energy efficiency. The result of the transient thermodynamic model is used to estimate the reduction in CO2 emissions in CAES systems. According to the obtained result, a 65 MW ACAES plant can reduce about 17,794 tons of CO2 emission per year compared to a traditional CAES system with the same capacity.

Article
Publication date: 16 November 2020

Azizat Olusola Gbadegesin, Yanxia Sun and Nnamdi I. Nwulu

Storage systems are deemed to be unable to provide revenue commensurate with the resources invested in them, thus discouraging their incorporation within power networks. In…

Abstract

Purpose

Storage systems are deemed to be unable to provide revenue commensurate with the resources invested in them, thus discouraging their incorporation within power networks. In prosumer microgrids, storage systems can provide revenue from reduced grid consumption, energy arbitraging or when serving as back-up power. This study aims to examine stacking these revenue streams with the aim of making storage systems financially viable for inclusion in prosumer microgrids.

Design/methodology/approach

With the aim of reducing self-consumption and maximising revenue, the prosumer microgrid incorporating hybrid energy storage systems (HESS) and solar PV power is solved using the CPLEX solver of the Advanced Interactive Multidimensional Modeling Software (AIMMS). The financial analysis of the results is carried out to provide the payback periods of different system configurations of the prosumer microgrid.

Findings

The findings reveal that the payback period of the three HESS when minimising grid expenses during self-consumption alone and when compared with stacked revenue streams shows an improvement from 4.8–11.2 years to 2.4–6.6 years. With stacked HESS revenues, the supercapacitor-lithium ion battery HESS gave the shortest payback period of 2.31 years when solar PV power is at 75% penetration level.

Originality/value

Existing literature has considered revenue streams of storage systems at the electrical power transmission and distribution levels, but not for prosumer microgrids in particular. This study has captured these benefits and verified the profitability of stacking revenue from HESS to prosumer microgrids, using a case study.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 August 2021

Akbar Alidadi Shamsabadi, Mehdi Jahangiri, Tayebeh Rezaei, Rouhollah Yadollahi Farsani, Ali Seryani and Siavash Hakim

In this study, a solar water heating system along with a seasonal thermal energy storage and a heat pump is designed for a villa with an area of 192 m2 in Tehran, the capital of…

Abstract

Purpose

In this study, a solar water heating system along with a seasonal thermal energy storage and a heat pump is designed for a villa with an area of 192 m2 in Tehran, the capital of Iran.

Design/methodology/approach

According to the material and the area of the residential space, the required heating of the building was calculated manually and then the thermodynamic analysis of the system and simulation was done in MATLAB software. Finally, regarding the waste of system, an efficient solar heating system, providing all the required energy to heat the building, was obtained.

Findings

The surface area of the solar collector is equal to 46 m2, the capacity of the tank is about 2,850 m3, insulation thickness stands at 55 cm and the coefficient of performance in required heat pump is accounted to about 9.02. Also, according to the assessments, the maximum level of received energy by the collector in this system occurs at a maximum temperature of 68ºC.

Originality/value

To the best of the authors’ knowledge, in the present work, for the first time, using mathematical modeling and analyzing of the first and second laws of thermodynamics, as well as using of computational code in MATLAB software environment, the solar-assisted ground source heat pump system is simulated in a residential unit located in Tehran.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 4 June 2021

Matevz Obrecht, Rhythm Singh and Timitej Zorman

This paper aims to forecast the availability of used but operational electric vehicle (EV) batteries to integrate them into a circular economy concept of EVs' end-of-life (EOL…

2934

Abstract

Purpose

This paper aims to forecast the availability of used but operational electric vehicle (EV) batteries to integrate them into a circular economy concept of EVs' end-of-life (EOL) phase. Since EVs currently on the roads will become obsolete after 2030, this study focuses on the 2030–2040 period and links future renewable electricity production with the potential for storing it into used EVs' batteries. Even though battery capacity decreases by 80% or less, these batteries will remain operational and can still be seen as a valuable solution for storing peaks of renewable energy production beyond EV EOL.

Design/methodology/approach

Storing renewable electricity is gaining as much attention as increasing its production and share. However, storing it in new batteries can be expensive as well as material and energy-intensive; therefore, existing capacities should be considered. The use of battery electric vehicles (BEVs) is among the most exciting concepts on how to achieve it. Since reduced battery capacity decreases car manufacturers' interest in battery reuse and recycling is environmentally hazardous, these batteries should be integrated into the future electricity storage system. Extending the life cycle of batteries from EVs beyond the EV's life cycle is identified as a potential solution for both BEVEOL and electricity storage.

Findings

Results revealed a rise of photovoltaic (PV) solar power plants and an increasing number of EVs EOL that will have to be considered. It was forecasted that 6.27–7.22% of electricity from PV systems in scenario A (if EV lifetime is predicted to be 20 years) and 18.82–21.68% of electricity from PV systems in scenario B (if EV lifetime is predicted to be 20 years) could be stored in batteries. Storing electricity in EV batteries beyond EV EOL would significantly decrease the need for raw materials, increase energy system and EV sustainability performance simultaneously and enable leaner and more efficient electricity production and distribution network.

Practical implications

Storing electricity in used batteries would significantly decrease the need for primary materials as well as optimizing lean and efficient electricity production network.

Originality/value

Energy storage is one of the priorities of energy companies but can be expensive as well as material and energy-intensive. The use of BEV is among the most interesting concepts on how to achieve it, but they are considered only when in the use phase as vehicle to grid (V2G) concept. Because reduced battery capacity decreases the interest of car manufacturers to reuse batteries and recycling is environmentally risky, these batteries should be used for storing, especially renewable electricity peaks. Extending the life cycle of batteries beyond the EV's life cycle is identified as a potential solution for both BEV EOL and energy system sustainability, enabling more efficient energy management performance. The idea itself along with forecasting its potential is the main novelty of this paper.

Details

International Journal of Productivity and Performance Management, vol. 71 no. 3
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 8 April 2022

Bhanu Prakash Saripalli, Gagan Singh and Sonika Singh

Non-linear power–voltage characteristics of solar cell and frequently changing output due to variation in solar irradiance caused by movement of clouds are the major issues need…

Abstract

Purpose

Non-linear power–voltage characteristics of solar cell and frequently changing output due to variation in solar irradiance caused by movement of clouds are the major issues need to be considered in photovoltaic (PV) penetration to maintain the power quality of the grid. It is important for a PV module to always function at its maximum available power point to increase the efficiency and to maintain the grid stability. A possible solution to mitigate these generation fluctuations is the use of an electric double-layer capacitor or supercapacitor energy storage device, which is an efficient storage device for power smoothing applications. This study aims to propose a power smoothing control approach to smoothen out the output power variations of a solar PV system using a supercapacitor energy storage device.

Design/methodology/approach

To extract the maximum possible power from a PV panel, there are several maximum power points tracking (MPPT) algorithms developed in literature. Fuzzy logic controller-MPPT method is used in this work as it is a very efficient and popular technique which responds quickly under varying ecological conditions, reduced computational complexity and does not depend on any system constraints. Fuzzy logic-based MPPT controller by Boost DC–DC converter is developed for operating the PV panels at available maximum power point. Fuzzy logic-proportional integral (PI) charge controller is implemented by Buck–Boost converter to provide the constant current and suitable voltage for supercapacitor and to achieve better power smoothing. PI charge controller is preferred in this work as it offers better outcomes and is very easy to implement.

Findings

Simulation results conclude that the proposed power smoothing control approach can efficiently smooth out the power variations under variable irradiance and temperature situations. To confirm the accurateness of the proposed system, it is validated for poly-crystalline PV module and comparison of results is done by using different case study with and without the use of an energy storage system under change in irradiance condition. The proposed system is developed and examined on MATLAB/Simulink environment.

Originality/value

The performance comparison between PV power output with and without the use of a supercapacitor energy storage device under different Case Studies shows that the improved performance in smoothing of power output was achieved with the use of a supercapacitor energy storage device.

Article
Publication date: 7 March 2016

Adriano Sciacovelli and Vittorio Verda

The purpose of this paper is to investigate efficient designs of a shell-and-tube latent thermal energy storage system through an approach based on the analysis of entropy…

Abstract

Purpose

The purpose of this paper is to investigate efficient designs of a shell-and-tube latent thermal energy storage system through an approach based on the analysis of entropy generation. It proposes innovative branched fins to maximize the performance of the system.

Design/methodology/approach

A computational fluid dynamic (CFD) model is first used to detail the thermo-fluid dynamic transient behavior of the latent heat storage system. The model account for phase change, buoyancy driven fluid flow and heat transfer during the process of energy retrieval from the storage unit (solidification). The CFD model is then used to evaluate locally the entropy generation rate during the process. On the basis of the insight gathered through the analysis of the entropy generation, the design of the fins is gradually modified aiming at the maximization of the performance of the storage system.

Findings

The best fins design leads to a twofold increase of the solidification rate in the latent heat storage unit. The corresponding second-law efficiency shows an increase of 13 percent compared with traditional fins.

Research limitations/implications

The analysis is based on a single tube configuration of the storage system which implies that non-homogeneous effects due to multiple tubes are not considered. Nevertheless, the proposed design procedure is general and could be applied to different configurations of latent heat thermal storage systems.

Practical implications

Entropy generation analysis provides a very useful design approach to develop configurations of latent heat storage systems that may overcome current performance limitations. Also, practitioners in the field may also benefit of the results for improving current installations of energy storage systems.

Originality/value

Entropy generation is adapted and used to find an optimal design for a time dependent process. That is, a geometrical configuration is found for maximizing the performance over a span of time. This is a key aspect of the work because there is a strong trend toward energy systems operating under transient conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 11 August 2022

Li Ji, Yiwei Zhang, Ruifeng Shi, Limin Jia and Xin Zhang

Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation…

Abstract

Purpose

Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation vehicles and service facilities with a clean electricity supply and form a new model of a source-grid-load-storage-charge synergistic highway-PV-WT integrated system (HPWIS). This paper aims to improve the flexibility index of highways and increase CO2 emission reduction of highways.

Design/methodology/approach

To maximize the integration potential, a new energy-generation, storage and information-integration station is established with a dynamic master–slave game model. The flexibility index is defined to evaluate the system ability to manage random fluctuations in power generation and load levels. Moreover, CO2 emission reduction is also quantified. Finally, the Lianhuo Expressway is taken as an example to calculate emission reduction and flexibility.

Findings

The results show that through the application of the scheduling strategy to the HPWIS, the flexibility index of the Lianhuo Expressway increased by 29.17%, promoting a corresponding decrease in CO2 emissions.

Originality/value

This paper proposed a new model to capture the evolution of the HESS, which provides highway transportation vehicles and service facilities with a clean electricity supply and achieves energy transfer aided by an energy storage system, thus forming a new model of a transportation energy system with source-grid-load-storage-charge synergy. An evaluation method is proposed to improve the air quality index through the coordination of new energy generation and environmental conditions, and dynamic configuration and dispatch are achieved with the master–slave game model.

1 – 10 of over 15000