Search results

1 – 10 of 876
Article
Publication date: 23 April 2024

Fahim Ullah, Oluwole Olatunji and Siddra Qayyum

Contemporary technological disruptions are espoused as though they stimulate sustainable growth in the built environment through the Green Internet of Things (G-IoT). Learning…

Abstract

Purpose

Contemporary technological disruptions are espoused as though they stimulate sustainable growth in the built environment through the Green Internet of Things (G-IoT). Learning from discipline-specific experiences, this paper articulates recent advancements in the knowledge and concepts of G-IoT in relation to the construction and smart city sectors. It provides a scoping review for G-IoT as an overlooked dimension. Attention was paid to modern circularity, cleaner production and sustainability as key benefits of G-IoT adoption in line with the United Nations’ Sustainable Development Goals (UN-SDGs). In addition, this study also investigates the current application and adoption strategies of G-IoT.

Design/methodology/approach

This study uses the Preferred Reporting Items for Systematic and Meta-Analyses (PRISMA) review approach. Resources are drawn from Scopus and Web of Science repositories using apt search strings that reflect applications of G-IoT in the built environment in relation to construction management, urban planning, societies and infrastructure. Thematic analysis was used to analyze pertinent themes in the retrieved articles.

Findings

G-IoT is an overlooked dimension in construction and smart cities so far. Thirty-three scholarly articles were reviewed from a total of 82 articles retrieved, from which five themes were identified: G-IoT in buildings, computing, sustainability, waste management and tracking and monitoring. Among other applications, findings show that G-IoT is prominent in smart urban services, healthcare, traffic management, green computing, environmental protection, site safety and waste management. Applicable strategies to hasten adoption include raising awareness, financial incentives, dedicated work approaches, G-IoT technologies and purposeful capacity building among stakeholders. The future of G-IoT in construction and smart city research is in smart drones, building information modeling, digital twins, 3D printing, green computing, robotics and policies that incentivize adoption.

Originality/value

This study adds to the normative literature on envisioning potential strategies for adoption and the future of G-IoT in construction and smart cities as an overlooked dimension. No previous study to date has reviewed pertinent literature in this area, intending to investigate the current applications, adoption strategies and future direction of G-IoT in construction and smart cities. Researchers can expand on the current study by exploring the identified G-IoT applications and adoption strategies in detail, and practitioners can develop implementation policies, regulations and guidelines for holistic G-IoT adoption.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Expert briefing
Publication date: 18 April 2024

In March, Sonelgaz awarded 19 contracts for the installation of almost 3 gigawatts of solar power generation capacity. Increasing the renewables mix in Algeria's energy balance…

Details

DOI: 10.1108/OXAN-DB286498

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 22 September 2021

Amna Farrukh, Sanjay Mathrani and Aymen Sajjad

Despite differing strategies towards environmental sustainability in developed and developing nations, the manufacturing sector in these regional domains faces substantial…

Abstract

Purpose

Despite differing strategies towards environmental sustainability in developed and developing nations, the manufacturing sector in these regional domains faces substantial environmental issues. The purpose of this study is to examine the green-lean-six sigma (GLSS) enablers and outcomes for enhancing environmental sustainability of manufacturing firms in both, a developed and developing country context by using an environment-centric natural resource-based view (NRBV).

Design/methodology/approach

First, a framework of GLSS enablers and outcomes aligned with the NRBV strategic capabilities is proposed through a systematic literature review. Second, this framework is used to empirically investigate the GLSS enablers and outcomes of manufacturing firms through in-depth interviews with lean six sigma and environmental consultants from New Zealand (NZ) and Pakistan (PK) (developed and developing nations).

Findings

Analysis from both regional domains highlights the use of GLSS enablers and outcomes under different NRBV capabilities of pollution prevention, product stewardship and sustainable development. A comparison reveals that NZ firms practice GLSS to comply with environmental regulatory requirements, avoid penalties and maintain their clean-green image. Conversely, Pakistani firms execute GLSS to reduce energy use, satisfy international customers and create a green image.

Practical implications

This paper provides new insights on GLSS for environmental sustainability which can assist industrial experts and academia for future strategies and research.

Originality/value

This is one of the early comparative studies that has used the NRBV to investigate GLSS enablers and outcomes in manufacturing firms for enhancing environmental performance comparing developed and developing nations

Details

International Journal of Lean Six Sigma, vol. 15 no. 3
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2022

Naveenkumar R., Shanmugam S. and Veerappan AR

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar…

Abstract

Purpose

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).

Design/methodology/approach

Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.

Findings

Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.

Originality/value

Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 March 2024

Pratheek Suresh and Balaji Chakravarthy

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a…

Abstract

Purpose

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a dielectric fluid, has emerged as a promising alternative. Ensuring reliable operations in data centre applications requires the development of an effective control framework for immersion cooling systems, which necessitates the prediction of server temperature. While deep learning-based temperature prediction models have shown effectiveness, further enhancement is needed to improve their prediction accuracy. This study aims to develop a temperature prediction model using Long Short-Term Memory (LSTM) Networks based on recursive encoder-decoder architecture.

Design/methodology/approach

This paper explores the use of deep learning algorithms to predict the temperature of a heater in a two-phase immersion-cooled system using NOVEC 7100. The performance of recursive-long short-term memory-encoder-decoder (R-LSTM-ED), recursive-convolutional neural network-LSTM (R-CNN-LSTM) and R-LSTM approaches are compared using mean absolute error, root mean square error, mean absolute percentage error and coefficient of determination (R2) as performance metrics. The impact of window size, sampling period and noise within training data on the performance of the model is investigated.

Findings

The R-LSTM-ED consistently outperforms the R-LSTM model by 6%, 15.8% and 12.5%, and R-CNN-LSTM model by 4%, 11% and 12.3% in all forecast ranges of 10, 30 and 60 s, respectively, averaged across all the workloads considered in the study. The optimum sampling period based on the study is found to be 2 s and the window size to be 60 s. The performance of the model deteriorates significantly as the noise level reaches 10%.

Research limitations/implications

The proposed models are currently trained on data collected from an experimental setup simulating data centre loads. Future research should seek to extend the applicability of the models by incorporating time series data from immersion-cooled servers.

Originality/value

The proposed multivariate-recursive-prediction models are trained and tested by using real Data Centre workload traces applied to the immersion-cooled system developed in the laboratory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 November 2023

Flavian Emmanuel Sapnken, Mohammed Hamaidi, Mohammad M. Hamed, Abdelhamid Issa Hassane and Jean Gaston Tamba

For some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic…

44

Abstract

Purpose

For some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic growth and the ambitious projects underway. Therefore, one of the state's priorities is the mastery of electricity demand. In order to get there, it would be helpful to have reliable forecasting tools. This study proposes a novel version of the discrete grey multivariate convolution model (ODGMC(1,N)).

Design/methodology/approach

Specifically, a linear corrective term is added to its structure, parameterisation is done in a way that is consistent to the modelling procedure and the cumulated forecasting function of ODGMC(1,N) is obtained through an iterative technique.

Findings

Results show that ODGMC(1,N) is more stable and can extract the relationships between the system's input variables. To demonstrate and validate the superiority of ODGMC(1,N), a practical example drawn from the projection of electricity demand in Cameroon till 2030 is used. The findings reveal that the proposed model has a higher prediction precision, with 1.74% mean absolute percentage error and 132.16 root mean square error.

Originality/value

These interesting results are due to (1) the stability of ODGMC(1,N) resulting from a good adequacy between parameters estimation and their implementation, (2) the addition of a term that takes into account the linear impact of time t on the model's performance and (3) the removal of irrelevant information from input data by wavelet transform filtration. Thus, the suggested ODGMC is a robust predictive and monitoring tool for tracking the evolution of electricity needs.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 28 March 2024

Hatice Merve Yanardag Erdener and Ecem Edis

Living walls (LWs), vegetated walls with an integrated growth layer behind, are being increasingly incorporated in buildings. Examining plant characteristics’ comparative impacts…

Abstract

Purpose

Living walls (LWs), vegetated walls with an integrated growth layer behind, are being increasingly incorporated in buildings. Examining plant characteristics’ comparative impacts on LWs’ energy efficiency-related thermal behavior was aimed, considering that studies on their relative effects are limited. LWs of varying leaf albedo, leaf transmittance and leaf area index (LAI) were studied for Antalya, Turkey for typical days of four seasons.

Design/methodology/approach

Dynamic simulations run by Envi-met were used to assess the plant characteristics’ influence on seasonal and orientation-based heat fluxes. After model calibration, a sensitivity analysis was conducted through 112 simulations. The minimum, mean and maximum values were investigated for each plant characteristic. Energy need (regardless of orientation), temperature and heat flux results were compared among different scenarios, including a building without LW, to evaluate energy efficiency and variables’ impacts.

Findings

LWs reduced annual energy consumption in Antalya, despite increasing energy needs in winter. South and west facades were particularly advantageous for energy efficiency. The impacts of leaf albedo and transmittance were more significant (44–46%) than LAI (10%) in determining LWs’ effectiveness. The changes in plant characteristics changed the energy needs up to ca 1%.

Research limitations/implications

This study can potentially contribute to generating guiding principles for architects considering LW use in their designs in hot-humid climates.

Originality/value

The plant characteristics’ relative impacts on energy efficiency, which cannot be easily determined by experimental studies, were examined using parametric simulation results regarding three plant characteristics.

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart…

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Book part
Publication date: 22 April 2024

Rob Noonan

Abstract

Details

Capitalism, Health and Wellbeing
Type: Book
ISBN: 978-1-83797-897-7

1 – 10 of 876