Search results

1 – 10 of over 2000
Article
Publication date: 20 September 2022

Robin Cyriac and Saleem Durai M.A.

Routing protocol for low-power lossy network (RPL) being the de facto routing protocol used by low power lossy networks needs to provide adequate routing service to mobile nodes…

Abstract

Purpose

Routing protocol for low-power lossy network (RPL) being the de facto routing protocol used by low power lossy networks needs to provide adequate routing service to mobile nodes (MNs) in the network. As RPL is designed to work under constraint power requirements, its route updating frequency is not sufficient for MNs in the network. The purpose of this study is to ensure that MNs enjoy seamless connection throughout the network with minimal handover delay.

Design/methodology/approach

This study proposes a load balancing mobility aware secure hybrid – RPL in which static node (SN) identifies route using metrics like expected transmission count, and path delay and parent selection are further refined by working on remaining energy for identifying the primary route and queue availability for secondary route maintenance. MNs identify route with the help of smart timers and by using received signal strength indicator sampling of parent and neighbor nodes. In this work, MNs are also secured against rank attack in RPL.

Findings

This model produces favorable result in terms of packet delivery ratio, delay, energy consumption and number of living nodes in the network when compared with different RPL protocols with mobility support. The proposed model reduces packet retransmission in the network by a large margin by providing load balancing to SNs and seamless connection to MNs.

Originality/value

In this work, a novel algorithm was developed to provide seamless handover for MNs in network. Suitable technique was developed to provide load balancing to SNs in network by maintaining appropriate secondary route.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 6 February 2024

Vincent Dodoma Mwale, Long Seng To, Chrispin Gogoda, Tiyamike Ngonda and Richard Nkhoma

This study aims to investigate the intricate relationships between a community energy system, water resources and biodiversity conservation, with a specific focus on augmenting…

Abstract

Purpose

This study aims to investigate the intricate relationships between a community energy system, water resources and biodiversity conservation, with a specific focus on augmenting community energy resilience in Bondo. The primary objective is to gain an in-depth understanding of how community members perceive and experience the challenges related to balancing the often-conflicting demands of energy, water and biodiversity conservation within this context.

Design/methodology/approach

The research uses a qualitative approach to unravel the multifaceted dynamics of community energy systems, water resources and biodiversity conservation in Bondo. Data were collected through focus groups and direct observations, enabling a nuanced exploration of community perspectives and lived experiences. The subsequent analysis of this qualitative data follows established thematic analysis procedures.

Findings

The study's findings shed light on the formidable barriers that impede rural communities in Malawi from accessing electricity effectively. Even in communities fortunate enough to have electricity connections, the lack of knowledge regarding productive electricity use results in community energy systems operating at significantly reduced load factors. Furthermore, the intricate challenge of managing a biodiversity hotspot persists, exacerbated by the densely populated peripheral communities' continued reliance on forest, land and water resources. These activities, in turn, contribute to ecosystem degradation.

Originality/value

In a context where government-led management of forest reserves and game reserves has not yielded the expected results due to a multitude of factors, there arises a compelling need for innovative approaches. One such innovation involves fostering partnerships between the government and experienced trusts as lead organisations, providing a fresh perspective on addressing the complex interplay between community energy systems, water resources and biodiversity conservation. This novel approach opens doors to explore alternative pathways for achieving the delicate balance between human energy needs and the preservation of vital ecosystems.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 8 July 2022

Mukesh Soni, Nihar Ranjan Nayak, Ashima Kalra, Sheshang Degadwala, Nikhil Kumar Singh and Shweta Singh

The purpose of this paper is to improve the existing paradigm of edge computing to maintain a balanced energy usage.

Abstract

Purpose

The purpose of this paper is to improve the existing paradigm of edge computing to maintain a balanced energy usage.

Design/methodology/approach

The new greedy algorithm is proposed to balance the energy consumption in edge computing.

Findings

The new greedy algorithm can balance energy more efficiently than the random approach by an average of 66.59 percent.

Originality/value

The results are shown in this paper which are better as compared to existing algorithms.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 22 April 2022

Kamalakshi Dayal and Vandana Bassoo

The performance of Wireless Sensor Networks (WSNs) applications is bounded by the limited resources of battery-enabled Sensor Nodes (SNs), which include energy and computational…

Abstract

Purpose

The performance of Wireless Sensor Networks (WSNs) applications is bounded by the limited resources of battery-enabled Sensor Nodes (SNs), which include energy and computational power; the combination of which existing research seldom focuses on. Although bio-inspired algorithms provide a way to control energy usage by finding optimal routing paths, those which converge slower require even more computational power, which altogether degrades the overall lifetime of SNs.

Design/methodology/approach

Hence, two novel routing protocols are proposed using the Red-Deer Algorithm (RDA) in a WSN scenario, namely Horizontal PEG-RDA Equal Clustering and Horizontal PEG-RDA Unequal Clustering, to address the limited computational power of SNs. Clustering, data aggregation and multi-hop transmission are also integrated to improve energy usage. Unequal clustering is applied in the second protocol to mitigate the hotspot problem in Horizontal PEG-RDA Equal Clustering.

Findings

Comparisons with the well-founded Ant Colony Optimisation (ACO) algorithm reveal that RDA converges faster by 85 and 80% on average when the network size and node density are varied, respectively. Furthermore, 33% fewer packets are lost using the unequal clustering approach which also makes the network resilient to node failures. Improvements in terms of residual energy and overall network lifetime are also observed.

Originality/value

Proposal of a bio-inspired algorithm, namely the RDA to find optimal routing paths in WSN and to enhance convergence rate and execution time against the well-established ACO algorithm. Creation of a novel chain cluster-based routing protocol using RDA, named Horizontal PEG-RDA Equal Clustering. Design of an unequal clustering equivalent of the proposed Horizontal PEG-RDA Equal Clustering protocol to tackle the hotspot problem, which enhances residual energy and overall network lifetime, as well as minimises packet loss.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 20 March 2024

Hakan F. Oztop, Burak Kiyak and Ishak Gökhan Aksoy

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store…

Abstract

Purpose

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store energy. This approach is intended to offer novel insights into enhancing thermal energy storage systems, particularly for applications where heat transfer efficiency and energy storage are critical.

Design/methodology/approach

The research involved an experimental and numerical analysis of PCM with a melting temperature range of 22 °C–26°C under various conditions. Three different jet angles (45°, 90° and 135°) and two container angles (45° and 90°) were tested. Additionally, two different Reynolds numbers (2,235 and 4,470) were used to explore the effects of jet outlet velocities on PCM melting behaviour. The study used a circular container and analysed the melting process using the hot air inclined jet impingement (HAIJI) method.

Findings

The obtained results showed that the average temperature for the last time step at Ф = 90° and Re = 4,470 is 6.26% higher for Ф = 135° and 14.23% higher for Ф = 90° compared with the 45° jet angle. It is also observed that the jet angle, especially for Ф = 90°, is a much more important factor in energy storage than the Reynolds number. In other words, the jet angle can be used as a passive control parameter for energy storage.

Originality/value

This study offers a novel perspective on the effective storage of waste heat transferred with air, such as exhaust gases. It provides valuable insights into the role of jet inclination angles and Reynolds numbers in optimizing the melting and energy storage performance of PCMs, which can be crucial for enhancing the efficiency of thermal energy storage systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 July 2021

Ana Carolina Franco De Oliveira, Cristiano Saad Travassos do Carmo, Alexandre Santana Cruz and Renata Gonçalves Faisca

In developing countries, such as Brazil, the construction sector is consistently focused on the construction of new buildings, and there is no dissemination of the preservation…

Abstract

Purpose

In developing countries, such as Brazil, the construction sector is consistently focused on the construction of new buildings, and there is no dissemination of the preservation, restoration and maintenance of historic buildings. Idle buildings, due to the use and lack of maintenance, present pathological manifestations, such as moisture problems that compromise specially their thermal and energy performance. With this in mind, the purpose of this work is to create a digital model using terrestrial photogrammetry and suggest retrofit interventions based on computer simulation to improve the thermal and energy performance of a historical building.

Design/methodology/approach

The proposed methodology combined terrestrial photogrammetry using common smartphones and commercial software for historical buildings with building information modeling (historic building information modeling (HBIM)) and building energy modeling (BEM). The approach follows five steps: planning, site visit, data processing, data modeling and results. Also, as a case study, the School of Architecture and Urbanism of the Fluminense Federal University, built in 1888, was chosen to validate the approach.

Findings

A digital map of pathological manifestations in the HBIM model was developed, and interventions considering the application of expanded polystyrene in the envelope to reduce energy consumption were outlined. From the synergy between HBIM and BEM, it was concluded that the information modeled using photogrammetry was fundamental to create the energy model, and simulations were needed to optimize the possible solutions in terms of energy consumption.

Originality/value

Firstly, the work proposes a reasonable methodology to be applied in development countries without sophisticated technologies, but with acceptable precision for the study purpose. Secondly, the presented study shows that the use of HBIM for energy modeling proved to be useful to simulate possible solutions that optimize the thermal and energy performance.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 15 February 2024

Ketki Kaushik and Shruti Shastri

This study aims to assess the nexus among oil price (OP), renewable energy consumption (REC) and trade balance (TB) for India using annual time series data for the time period…

Abstract

Purpose

This study aims to assess the nexus among oil price (OP), renewable energy consumption (REC) and trade balance (TB) for India using annual time series data for the time period 1985–2019. In particular, the authors examine whether REC improves India's TB in the context of high oil import dependence.

Design/methodology/approach

The study uses autoregressive distributed lags (ARDL) bound testing approach that has the advantage of yielding estimates of long-run and short-run parameters simultaneously. Moreover, the small sample properties of this approach are superior to other multivariate cointegration techniques. Fully modified ordinary least square (FMOLS) and dynamic ordinary least squares (DOLS) are also applied to test the robustness of the results. The causality among the series is investigated through block exogeneity test based on vector error correction model.

Findings

The findings based on ARDL bounds testing approach indicate that OPs exert a negative impact on TB of India in both long run and short run, whereas REC has a favorable impact on the TB. In particular, 1% increase in OPs decreases TBs by 0.003% and a 1% increase in REC improves TB by 0.011%. The results of FMOLS and DOLS corroborate the findings from ARDL estimates. The results of block exogeneity test suggest unidirectional causation from OPs to TB; OPs to REC and REC to TB.

Practical implications

The study underscore the importance of renewable energy as a potential tool to curtail trade deficits in the context of Indian economy. Our results suggest that the policymakers must pay attention to the hindrances in augmentation of renewable energy usage and try to capitalize on the resulting gains for the TB.

Social implications

Climate change is a major challenge for developing countries like India. Renewable energy sector is considered an important instrument toward attaining the twin objectives of environmental sustainability and employment generation. This study underscores another role of REC as a tool to achieve a sustainable trade position, which may help India save her valuable forex reserves for broader objectives of economic development.

Originality/value

To the best of the authors’ knowledge, this is the first study that probes the dynamic nexus among OPs, REC and TB in Indian context. From a policy standpoint, the study underscores the importance of renewable energy as a potential tool to curtail trade deficits in context of India. From a theoretical perspective, the study extends the literature on the determinants of TB by identifying the role of REC in shaping TB.

Details

Sustainability Accounting, Management and Policy Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8021

Keywords

Article
Publication date: 13 November 2023

Thisara Manupriya Sathkumara, Anuradha Samarajeewa Waidyasekara and Hasith Chathuranga Victar

The use of renewable energy has become necessary because of the harmful effects of current energy sources on the environment, limited availability and financial crisis…

Abstract

Purpose

The use of renewable energy has become necessary because of the harmful effects of current energy sources on the environment, limited availability and financial crisis. Transparent solar panels have emerged as a promising technology for integrating renewable energy generation into building structures. Therefore, this paper aims to explore the feasibility of transparent solar panels for high-rise building façades in Sri Lanka.

Design/methodology/approach

The research apprehended a qualitative approach, including two expert interview rounds adhering to the Delphi technique with 17 and 15 experts each per round. Manual content analysis was incorporated to analyse the collected data.

Findings

Regarding operation and maintenance, the study emphasizes the importance of regular inspection, cleaning and repair of transparent solar panels to ensure optimal performance and longevity. These activities contribute to maximizing energy generation and maintaining the aesthetic appeal of the building. The benefits of implementing transparent solar panels on building façades are manifold. They include renewable energy generation, reduced greenhouse gas emissions, improved energy efficiency and enhanced architectural aesthetics. Furthermore, the research findings underscore the potential of transparent solar panels to contribute to Sri Lanka’s sustainable development goals and address the country’s increasing energy demand. However, the study also identifies challenges that need to be addressed for successful implementation.

Originality/value

This study contributes to understanding the feasibility of transparent solar panels for high-rise building façades in Sri Lanka. The research findings offer valuable insights into the operation and maintenance aspects, benefits, challenges and strategies for implementing transparent solar panels effectively. This knowledge can guide policymakers, architects and developers in making informed decisions regarding the integration of transparent solar panels, thereby promoting sustainable and energy-efficient building practices in Sri Lanka.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 5 December 2023

Jennifer Nabaweesi, Twaha Kigongo Kaawaase, Faisal Buyinza, Muyiwa Samuel Adaramola, Sheila Namagembe and Isaac Nabeta Nkote

Modern renewable energy is crucial for environmental conservation, sustainable economic growth and energy security, especially in developing East African nations that heavily use…

Abstract

Purpose

Modern renewable energy is crucial for environmental conservation, sustainable economic growth and energy security, especially in developing East African nations that heavily use traditional biomass. Thus, this study aims to examine urbanization and modern renewable energy consumption (MREC) in East African community (EAC) while controlling for gross domestic product (GDP), population growth, foreign direct investment (FDI), industrialization and trade openness (TOP).

Design/methodology/approach

This study considers a balanced panel of five EAC countries from 1996 to 2019. Long-run dynamic ordinary least squares (DOLS) and fully modified ordinary least squares estimations were used to ascertain the relationships while the vector error-correction model was used to ascertain the causal relationship.

Findings

Results show that urbanization, FDI, industrialization and TOP positively affect MREC. Whereas population growth and GDP reduce MREC, the effect for GDP is not that significant. The study also found a bidirectional causality between urbanization, FDI, TOP and MREC in the long run.

Practical implications

Investing in modern renewable energy facilities should be a top priority, particularly in cities with expanding populations. The governments of the EAC should endeavor to make MREC affordable among the urban population by creating income-generating activities in the urban centers and sensitizing the urban population to the benefits of using MREC. Also, the government may come up with policies that enhance the establishment of lower prices for modern renewable energy commodities so as to increase their affordability.

Originality/value

MREC is a new concept in the energy consumption literature. Much of the research focuses on renewable energy consumption including the use of traditional biomass which contributes to climate change negatively. Besides, the influence of factors such as urbanization has not been given significant attention. Yet urbanization is identified as a catalyst for MREC.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 4 March 2024

Hemanth Kumar N. and S.P. Sreenivas Padala

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based…

Abstract

Purpose

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based multiobjective optimization (MOO) model integrating the nondominated sorting genetic algorithm III (NSGA-III) to enhance sustainability. The goal is to reduce embodied energy and cost in the design process.

Design/methodology/approach

Through a case study research method, this study uses BIM, NSGA-III and real-world data in five phases: literature review, identification of factors, BIM model development, MOO model creation and validation in the architecture, engineering and construction sectors.

Findings

The innovative BIM-based MOO model optimizes embodied energy and cost to achieve sustainable construction. A commercial building case study validation showed a reduction of 30% in embodied energy and 21% in cost. This study validates the model’s effectiveness in integrating sustainability goals, enhancing decision-making, collaboration, efficiency and providing superior assessment.

Practical implications

This model delivers a unified approach to sustainable design, cutting carbon footprint and strengthening the industry’s ability to attain sustainable solutions. It holds potential for broader application and future integration of social and economic factors.

Originality/value

The research presents a novel BIM-based MOO model, uniquely focusing on sustainable construction with embodied energy and cost considerations. This holistic and innovative framework extends existing methodologies applicable to various buildings and paves the way for additional research in this area.

1 – 10 of over 2000