Search results

1 – 10 of 878
Article
Publication date: 2 January 2020

Haixu Yang, Feng Zhu, Haibiao Wang, Liang Yu and Ming Shi

The purpose of this paper is to describe the structure of nonlinear dampers and the dynamic equations, and nonlinear realization principles and optimize the parameters of…

Abstract

Purpose

The purpose of this paper is to describe the structure of nonlinear dampers and the dynamic equations, and nonlinear realization principles and optimize the parameters of nonlinear dampers. Using the finite element method to analyze the seismic performance of the frame structure with shock absorber.

Design/methodology/approach

The nonlinear shock absorber was installed in a six-storey reinforced concrete frame structure to study its seismic performance. The main structure was designed according to the eight degree seismic fortification intensity, and the time history dynamic analysis was carried out by Abaqus finite element software. EL-Centro, Taft and Wenchuan seismic record were selected to analyze the seismic response of the structure under different magnitudes and different acceleration peaks.

Findings

Through the principle study and parameter analysis of the nonlinear shock absorber, combined with the finite element simulation results, the shock absorption performance and shock absorption effect of the nonlinear energy sink (NES) nonlinear shock absorber are given as follows: first, the damping of the NES shock absorber is satisfied, and the linear spring stiffness and nonlinear stiffness of the shock absorber are based on the relationship k1=kn×kl2, so that the spring design length is fixed, and the linear stiffness of the shock absorber can be obtained. The nonlinear shock absorber has the characteristics of high rigidity and frequency bandwidth, so that the frequency is infinitely close to the frequency of the main structure, and when the mass of the shock absorber satisfies between 0.056 and 1, a good shock absorption effect can be obtained, and the reinforced concrete with the shock absorber is obtained. The frame structure can effectively reduce the seismic response, increase the natural vibration period of the structure and reduce the damage loss of the structure. Second, the spacer and each additional shock absorber have a small difference in shock absorption effect. After the shock absorber parameters are accurately calculated, the number of installations does not affect the shock absorption effect of the structure. Therefore, the shock absorber is properly constructed and accurately calculated. Parameters can reduce costs.

Originality/value

New shock absorbers reduce earthquake-induced damage to buildings.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 November 2015

Alessandro Bozzetto, Ole Christian Spro and Elisabetta Tedeschi

The purpose of this paper is to quantify the impact of the constraints of the power take-off system (PTO) on the power extraction of a point absorber wave energy converter (WEC)…

Abstract

Purpose

The purpose of this paper is to quantify the impact of the constraints of the power take-off system (PTO) on the power extraction of a point absorber wave energy converter (WEC). Such constraints include power, torque and maximum stroke limitations. Two different concepts, unidirectional and bidirectional point absorbers, are analysed, which both are relevant for practical applications in the wave energy industry.

Design/methodology/approach

The two different cases of unidirectional and bidirectional point absorbers are analysed and directly compared. Moreover, a simplified control strategy is considered for the point absorber, which is based on a constant torque reference. The WEC performance is first evaluated in selected sea states and then the analysis is extended to assess the impact of the different solutions on the expected yearly wave energy production of the point absorber, when deployed at a specific location. The European Marine Energy Center (EMEC) is selected as the target site for the analysis.

Findings

The analysis was performed in selected sea states and then it was extended to all the sea conditions occurring at the EMEC test site. The comparison between unidirectional and bidirectional operated devices suggested a clear superiority of the latter, ensuring similar power extraction at the expense of a halved required torque by the PTO. Moreover, a selective control strategy was implemented, and the results showed an increase in yearly energy production for the bidirectional device.

Research limitations/implications

The study proved the importance of including the actual PTO constraints in the preliminary power assessment in order to avoid unrealistic overestimation of the expected power performance.

Originality/value

The paper quantifies the power performance obtained with the application of such control strategy considering both unidirectional and bidirectional point absorbers. This analysis and comparison is extremely relevant since both unidirectional and bidirectional devices are reaching the market.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 October 2021

Min Zhang, Cheng Hu, Jingwei Gao and Peng Zheng

Suspension is a significantly important component for automotive and railway vehicles. Regenerative hydraulic-electric shock absorbers (RHSA) have been proposed for the purpose of…

Abstract

Purpose

Suspension is a significantly important component for automotive and railway vehicles. Regenerative hydraulic-electric shock absorbers (RHSA) have been proposed for the purpose of attenuating vibration of vehicle suspension, and also recover kinetic energy originated from vehicle vibration that is conventionally dissipated by hydraulic dampers. To advance the technology, the paper aims to present an RHSA system for heavy-duty and railway vehicles and create a dynamic modelling to discuss on the development process of RHSA model.

Design/methodology/approach

First, the development of RHSA dynamic model can be resolved into three stage models (an ideal one, a second one with an added accumulator and a third one that considers both accumulator and system losses) to comprehensively evaluate the RHSA's characterisation. Second, a prototype is fabricated for testing and the results meet desired agreements between simulation and measurement. Finally, the study of key parameters is carried out to investigate the influences of hydraulic-cylinder size, hydraulic-motor displacement and accumulator pre-charged pressure on the RHSA system.

Findings

The findings of sensitivity analysis indicate that the component design can satisfy the damping characteristics and power performance required for heavy-duty vehicle, freight wagon and typical passenger train. The results also show that reducing the losses is highly beneficial for saving suspension energy, improving system reliability and increasing power-conversion efficiency.

Originality/value

The paper presents a more detailed method for the development and analysis of a RHSA. Compared with the typical shock absorbers, RHSA can also recover the vibration energy dissipated by suspension.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 September 2018

Evangelos Bellos, Ilias Daniil and Christos Tzivanidis

The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a…

Abstract

Purpose

The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a systematic way to determine which configuration leads to the maximum thermal enhancement.

Design/methodology/approach

The analysis is performed in SolidWorks Flow Simulation with a validated computational fluid dynamics model. Moreover, the useful heat production and the pumping work demand increase are evaluated using the exergy and the overall efficiency criteria. The different scenarios are compared for inlet temperature of 600 K, flow rate of 100 L/min and Syltherm 800 as the working fluid. Moreover, the inlet temperature is examined from 450 to 650 K, and the diameter of the insert is investigated up to 50 mm.

Findings

According to the final results, the use of a cylindrical insert of 30 mm diameter is the most sustainable choice which leads to 0.56 per cent thermal efficiency enhancement. This insert was examined in various eccentric positions, and it is found that the optimum location is 10 mm over the initial position in the vertical direction. The thermal enhancement, in this case, is about 0.69 per cent. The pumping work demand was increased about three times with the insert of 30 mm, but the absolute values of this parameter are too low compared to the useful heat production. So, it is proved that the increase in the pumping work is not able to eliminate the useful heat production increase. Moreover, the thermal enhancement is found to be greater at higher temperature levels and can reach up to 1 per cent for an inlet temperature of r650 K.

Originality/value

The present work is a systematic investigation of the cylindrical flow insert in a parabolic trough collector. Different diameters of this insert, as well as different positions in two dimensions, are examined using a parametrization of angle-radius. To the authors’ knowledge, there is no other study in the literature that investigates the presented many cases systematically with the followed methodology on parabolic trough collectors. Moreover, the results of this work are evaluated with various criteria (thermal, exergy and overall efficiency), something which is not found in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2005

M.A. Alghoul, M.Y. Sulaiman, B.Z. Azmi and M.Abd. Wahab

To cover the main contributions and developments in solar thermal collectors through focusing on materials, heat transfer characteristics and manufacturing challenges.

4598

Abstract

Purpose

To cover the main contributions and developments in solar thermal collectors through focusing on materials, heat transfer characteristics and manufacturing challenges.

Design/methodology/approach

A range of published papers and internet research including research work on various solar thermal collectors (flat plate, evacuated tubes, and heat pipe tube) were used. Evaluation of solar collectors performance is critiqued to aid solar technologies make the transition into a specific dominant solar collector. The sources are sorted into sections: finding an academic job, general advice, teaching, research and publishing, tenure and organizations.

Findings

Provides information about types of solar thermal collectors, indicating what can be added by using evacuated tube collectors instead of flat plate collectors and what can be added by using heat pipe collectors instead of evacuated tubes.

Research limitations/implications

Focusing only on three types of solar thermal collectors (flat plate, evacuated tubes, and heat pipe tube).

Practical implications

Useful source of information for consultancy and impartial advice for graduate students planning to do research in solar thermal technologies.

Originality/value

This paper fulfils identified information about materials and heat transfer properties of materials and manufacturing challenges of these three solar thermal collectors.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 June 2019

Shutian Liu, Xueshan Ding and Zeqi Tong

This paper aims to study the energy absorption properties of the thin-walled square tube with lateral piecewise variable thickness under axial crashing and the influence of the…

Abstract

Purpose

This paper aims to study the energy absorption properties of the thin-walled square tube with lateral piecewise variable thickness under axial crashing and the influence of the tube parameters on energy absorption.

Design/methodology/approach

In this work, the energy absorption properties of the thin-walled square tube were analyzed by theoretical, numerical and experimental approach. The numerical results are obtained based on the finite element method. The explicit formulation for predicting the mean crushing force of the tube with lateral piecewise variable thickness was derived based on Super Folding Element method. The limitation of the prediction formulation was analyzed by numerical calculation. The numerical calculation was also used to compare the energy absorption between the tube with lateral piecewise variable thickness and other tubes, and to carry out the parametric analysis.

Findings

Results indicate that the thin-walled tube with lateral piecewise variable thickness has higher energy absorption properties than the uniform thickness tubes and the tubes with lateral linear variable thickness. The thickness of the corner is the key factor for the energy absorption of the tubes. The thickness of the non-corner region is the secondary factor. Increasing the corner thickness and decreasing the non-corner thickness can make the energy absorption improved. It is also found that the prediction formulation of the mean crushing force given in this paper can quickly and accurately predict the energy absorption of the square tube.

Originality/value

The outcome of the present research provides a design idea to improve the energy absorption of thin-walled tube by designing cross-section thickness and gives an explicit formulation for predicting the mean crushing force quickly and accurately.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 6 November 2009

132

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 6
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 11 October 2018

Soroush Sadripour

In this study, the effects of using corrugated absorber plate (instead of flat plate) and also using aerosol/carbon-black nanofluid (instead of air) on heat transfer and turbulent…

Abstract

Purpose

In this study, the effects of using corrugated absorber plate (instead of flat plate) and also using aerosol/carbon-black nanofluid (instead of air) on heat transfer and turbulent flow characteristics in solar collectors were numerically investigated.

Design/methodology/approach

The 3D continuity, momentum and energy equation were solved by finite volume and SIMPLE algorithm. As a result, the corrugated absorber plate was inspected in the case of triangle, rectangle and sinuous with the wave length of 1 mm and wave amplitude of 3 mm in turbulent flow regime and Reynolds number between 2,500 and 4,000. Choosing the proper geometry was carried out based on the best performance evaluation criteria (PEC) and increasing the air temperature from collector inlet to outlet.

Findings

The results revealed that for all times of the year the highest PEC was obtained for corrugated Sinusoidal model; however, the highest temperature increase from inlet to outlet was obtained for rectangular corrugated model. In addition, the results indicated that in sinusoidal model, the nanoparticles volume fractions increase leads to heat performance coefficient increase and the best heat performance conditions were attained in volume fraction of 0.1 per cent and Reynolds number of 4,000 for both six months period. In model with rectangular corrugated plate, usage of nanofluid in all range of Reynolds numbers leads to reduction of outlet temperature.

Originality/value

The effect of some nanoparticles on heat transfer using thermal– hydraulic performances in heat exchangers has been assessed, but the effects of atmospheric aerosol-based nanofluid using carbon-black nanoparticles (CBNPs) on the heat transfer in corrugated heat sink solar collectors by 3D numerical modeling has not been yet investigated. In present study, usage of CBNPs with different volume fractions in range of 0 to 0.1 per cent in turbulent regime of fluid flow is analyzed. Furthermore, in this paper, besides the effects of using CBNPs, a solar absorber located in Shiraz, as one of the best solar irradiation receiver cities in Iran is evaluated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 February 2015

Adik Yadao and R. S. Hingole

Today’s car is one of the most important things in everyone’s life .Every person wants to have his or her own car but the question that arises in each buyer’s mind is whether the…

171

Abstract

Today’s car is one of the most important things in everyone’s life .Every person wants to have his or her own car but the question that arises in each buyer’s mind is whether the vehicle is safe enough to spend so much of money so it is the responsibility of an mechanical engineer to make the vehical comfortable and at the Same time safer. Now a days automakers are coming with various energy absorbing devices such as crush box, door beams etc. this energy absorbing device s prove to be very useful in reducing the amount force that is being transmitted to the occupant. In this we are using impact energy absorber in efficient manner as compare to earlier. The various steps involved in this project starting from developing the cad model of this inner impact energy absorber using the CAD software CATIA V5 R19. Then pre-processing is carried out in HYPERMESH 11.0 which includes assigning material, properties, boundary conditions such as contacts, constraints etc. LS-DYNA971 is used as a solver and LS-POST is used for the post processing and results obtained are compared to the standards. By carrying out this idea it has been observed that there is a considerable amount of energy that is being absorbed by this energy-absorbing device. Along with this energy absorption, the intrusion in passenger compartment is also reduced by considerable amount. So for safer and comfortable car with inner impact energy absorber is one of the best options available. This will get implement by this research work.

Details

World Journal of Engineering, vol. 12 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 June 2021

Masoud Behzad, Benjamin Herrmann, Williams R. Calderón-Muñoz, José M. Cardemil and Rodrigo Barraza

Volumetric air receivers experience high thermal stress as a consequence of the intense radiation flux they are exposed to when used for heat and/or power generation. This study…

Abstract

Purpose

Volumetric air receivers experience high thermal stress as a consequence of the intense radiation flux they are exposed to when used for heat and/or power generation. This study aims to propose a proper design that is required for the absorber and its holder to ensure efficient heat transfer between the fluid and solid phases and to avoid system failure due to thermal stress.

Design/methodology/approach

The design and modeling processes are applied to both the absorber and its holder. A multi-channel explicit geometry design and a discrete model is applied to the absorber to investigate the conjugate heat transfer and thermo-mechanical stress levels present in the steady-state condition. The discrete model is used to calibrate the initial state of the continuum model that is then used to investigate the transient operating states representing cloud-passing events.

Findings

The steady-state results constitute promising findings for operating the system at the desired airflow temperature of 700°C. In addition, we identified regions with high temperatures and high-stress values. Furthermore, the transient state model is capable of capturing the heat transfer and fluid dynamics phenomena, allowing the boundaries to be checked under normal operating conditions.

Originality/value

Thermal stress analysis of the absorber and the steady/transient-state thermal analysis of the absorber/holder were conducted. Steady-state heat transfer in the explicit model was used to calibrate the initial steady-state of the continuum model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 878