Search results

1 – 10 of 418
Article
Publication date: 17 April 2023

Grzegorz Kostro, Michal Michna, Filip Kutt and Roland Ryndzionek

Calculating the stator end-winding leakage inductance, taking into account the rotor, is difficult due to the irregular shape of the end-winding. The end-winding leakage may…

Abstract

Purpose

Calculating the stator end-winding leakage inductance, taking into account the rotor, is difficult due to the irregular shape of the end-winding. The end-winding leakage may distribute at the end of the active part and the fringing flux of the air gap. The fringing flux belongs to the main flux but goes into the end-winding region. Then, not all the magnetic flux occurring in the end region is the end-winding leakage flux. The purpose of this paper was to find a method to accurately separate the leakage from the total flux, taking into account the rotor.

Design/methodology/approach

In this paper, two methods based on energy calculation are presented. Both methods require the assumption that the machine is symmetrical. The first method depends on the total leakage inductance and the machine’s active region length. The second method is based on the energy stored in the end region of the machine. In this case, removing the energy produced by the fringing flux of the air gap is necessary. The model should have a volume-closing fringing flux to remove the part of energy belonging to the end of the air gap.

Findings

The method presented in the paper does not require rotor removal. The values of the end-winding leakage inductance computed based on the proposed method were compared with values computed using the method with the removed rotor. The computations show that the proposed method is closest to the results from the method presented in the literature. Results obtained in the first method present that rotor influence on the value of end-winding leakage inductance exists. The model of the stator end-winding described in the paper is general. Therefore, the proposed methods are suitable for calculating the end-winding leakage inductance of other electric machines.

Originality/value

The method presented in the paper considers the rotor in end-winding leakage inductance calculation. It is not necessary to remove the rotor as in the similar method presented in the literature. The authors elaborated a parametric model with a volume-closing fringing flux to remove the part of energy belonging to the end of the air gap. The authors also elaborated their 3D model of the machine winding for calculations in Opera 3D.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 November 2009

Ayman M. EL‐Refaie, Z.Q. Zhu, Thomas M. Jahns and David Howe

Permanent magnet (PM) brushless machines equipped with fractional‐slot concentrated‐windings (FSCW) have been receiving considerable attention over the past few years, due to the…

1094

Abstract

Purpose

Permanent magnet (PM) brushless machines equipped with fractional‐slot concentrated‐windings (FSCW) have been receiving considerable attention over the past few years, due to the fact that they have short endwindings, a high‐slot fill factor, a high efficiency and power density, and good flux‐weakening and fault‐tolerance capabilities. A key design parameter for such machines is the phase winding inductance since this has a significant impact on the performance, as well as on the magnitude of any reluctance torque. The purpose of this paper is to describe a detailed investigation of the various components of the winding inductance in machines equipped with both overlapping and non‐overlapping windings and different slot/pole number combinations. It also examines the influence of key design parameters, which affect the inductance components, with particular reference to the inductances of machines in which all the teeth are wound and those in which only alternate teeth are wound.

Design/methodology/approach

The paper analyzes and compares various inductance components which result from different winding configurations.

Findings

It is shown that the main component of the winding inductance is the relatively large slot‐leakage component. Both analytical and finite element models are employed and predicted results are validated on several prototype machines.

Originality/value

Such a thorough investigation of the various inductance components for these type of machines has not been presented before. The paper will serve as a good reference for engineers and researchers designing PM machines equipped with FECW.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 1995

R. De Weerdt, K. Hameyer and R. Belmans

The calculation of the end winding leakage of a squirrel‐cage induction motor using a three‐dimensional finite element method is discussed. The end winding inductance is thought…

Abstract

The calculation of the end winding leakage of a squirrel‐cage induction motor using a three‐dimensional finite element method is discussed. The end winding inductance is thought to consist of a leakage, describing the flux linked with the end winding only, and a mutual part, describing the flux linked with both end winding and end ring. Both leakage and mutual inductance are found to vary for different load conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 14 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 3 May 2013

István Király

The part of the stator leakage inductance whose quantity changes with the coil pitch is the slot leakage inductance. The purpose of this paper is to determine an analytical…

Abstract

Purpose

The part of the stator leakage inductance whose quantity changes with the coil pitch is the slot leakage inductance. The purpose of this paper is to determine an analytical expression which accounts for various slot shapes and the coil pitch change. This approach contrasts with the standard one, in which the same characteristics are inaccurately assumed for each slot shape. A further advantage of the proposed analytical expression is that it can also be used to model the slot leakage inductance for different phase numbers.

Design/methodology/approach

From the calculated coefficients of a slot by the Finite Element Method (FEM), the characteristics of the slot leakage coefficients are determined by an analytical expression. This helps one to study the connection between the slot shape types and the characteristics of slot leakage coefficients for different phase numbers.

Findings

The coefficients, which describe the change of slot leakage, are not the same for every slot type. These inaccuracies can result in deviation from the presented values in the classical literature.

Originality/value

By use of parameters, gained from the FEM calculation of a slot, the characteristics of the slot leakage coefficient can be determined as the function of winding pitch for different phase numbers by an analytical expression. Good accuracy of the analytical method is verified by the determination of the characteristics from the measurement of the two‐, three‐ and six‐phase windings and by the finite element calculations. Beside the speed of the process, it gives an overview about the connection between the slot shape and the coefficients.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 December 2018

Fatemeh Ebadi, Mohammad Mardaneh and Akbar Rahideh

This paper aims to show the proposed energy method for inductance calculation is valid for any number of poles, phases and any winding layout.

Abstract

Purpose

This paper aims to show the proposed energy method for inductance calculation is valid for any number of poles, phases and any winding layout.

Design/methodology/approach

A two-dimensional (2-D) analytical energy-based approach is presented to calculate self-inductances and mutual inductances of brushless surface-mounted permanent-magnet machines.

Findings

The proposed calculation procedure is valid for brushless permanent-magnet machines with slotted or slotless stator structure. Comparisons between energy method and flux linkage method are presented based on simulation and experimental results. It shows that the energy method has an excellent agreement with the result obtained from finite element method (FEM) and experimental study.

Originality/value

This paper compares energy-based method with flux linkage method and FEM for inductance calculations in slotless and slotted permanent-magnet motors. The relations for inductance calculation are presented which are obtained based on 2-D analytical representation of magnetic field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Abstract

Purpose

The paper aims to illustrate a numerical technique to calculate fields and inductances of rotating electrical machines.

Design/methodology/approach

The technique is based on an integral formulation of the nonlinear magnetostatic model in terms of the unknown magnetization. The solution is obtained by means of a Picard-Banach iteration whose convergence can be theoretically proved.

Findings

The proposed method has been used to build a model of a large turbine generator. In particular, the influence of end effects on flux linkages has been computed. It has been demonstrated that the 2D solution underestimates the flux linkages as well as the no load voltage of 2 per cent, while the leakage fluxes are computed by the 2D solution with errors as high as 20 per cent.

Originality/value

The method is advantageous in comparison to standard methods.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Yonghong Xia, Junbo Liu, Bo Xu and Hongjian Wu

The purpose of this paper is to propose a novel hybrid excitation permanent magnet synchronous generator (HEPMSG) utilizing tooth harmonic for excitation, the structural features…

Abstract

Purpose

The purpose of this paper is to propose a novel hybrid excitation permanent magnet synchronous generator (HEPMSG) utilizing tooth harmonic for excitation, the structural features and operation principle of which are also described.

Design/methodology/approach

To obtain the operation performance quickly, this paper derives the mathematical model of the machine system represented by circuit, and analyzes the operation mode of rectifier circuit in the tooth harmonic excitation system, then the standard state equations for each operation mode are obtained. Combining the inductance parameter of this machine with the load resistance and inductance, the armature current waveform, the field current waveform and tooth harmonic winding current waveform are obtained by using the numerical method to solve the standard state equation.

Findings

Comparing with the experimental results, the availability of the principle and the validity of the model of the machine system are verified.

Practical implications

This HEPMSG is a new brushless self-excited and self-regulated generator, which is suitable for an independent power source.

Originality/value

Unlike the existing hybrid excitation permanent magnet machine, this HEPMSG utilized the inherent tooth harmonic EMF of the rotor to adjust the air-gap magnetic field of the permanent magnet machine.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Yi Sui, Ping Zheng, Peilun Tang, Fan Wu and Pengfei Wang

The purpose of this paper is to investigate a five-phase permanent-magnet synchronous machine (PMSM) that features high-power density and high-fault-tolerant capability for…

Abstract

Purpose

The purpose of this paper is to investigate a five-phase permanent-magnet synchronous machine (PMSM) that features high-power density and high-fault-tolerant capability for electric vehicles (EVs).

Design/methodology/approach

The five-phase 20-slot/18-pole PMSM is designed by finite-element method. Two typical rotor structures which include Halbach array and rotor eccentricity are compared to achieve sinusoidal back electromotive force (EMF). The influence of slot dimensions on leakage inductance and short-circuit current is analyzed. The method to reduce eddy current loss of permanent magnets (PMs) is investigated. The machine performances under both healthy and fault conditions are evaluated. Finally, thermal behavior of the machine is studied by Ansys.

Findings

With both no-load and load performances considered, rotor eccentricity is proposed to reduce the harmonic contents of EMF. Increasing slot leakage inductance is an effective way to limit the short-circuit current. By segmenting PMs in circumferential direction, the PM eddy current loss is reduced and the machine efficiency is improved. With proper fault-tolerant control strategy, acceptable torque performance can be achieved under fault conditions. The proposed machine can safely operate under Class F insulation.

Originality/value

So far, many researches focus on multiphase PMSMs used in aviation fields, such as fuel pump and electric actuator. Differing from PMSMs used in aviation applications, machines for EVs require characteristics like wide speed ranges and variable operating conditions. Hence, this paper proposes a five-phase 20-slot/18-pole PMSM for EVs. The proposed design methodology is applicable to multiphase PMSMs with different slot/pole combinations.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 1995

E. Andresen and M. Anders

A three axes torque motor for adjusting an airborne telescope to fixed points in the space is shortly presented. Different calculation methods for inductance and force…

Abstract

A three axes torque motor for adjusting an airborne telescope to fixed points in the space is shortly presented. Different calculation methods for inductance and force determination and some results are briefly discussed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 14 no. 4
Type: Research Article
ISSN: 0332-1649

1 – 10 of 418