Search results

1 – 1 of 1
Open Access
Article
Publication date: 7 October 2021

Enas M.F. El Houby

Diabetic retinopathy (DR) is one of the dangerous complications of diabetes. Its grade level must be tracked to manage its progress and to start the appropriate decision for…

2835

Abstract

Purpose

Diabetic retinopathy (DR) is one of the dangerous complications of diabetes. Its grade level must be tracked to manage its progress and to start the appropriate decision for treatment in time. Effective automated methods for the detection of DR and the classification of its severity stage are necessary to reduce the burden on ophthalmologists and diagnostic contradictions among manual readers.

Design/methodology/approach

In this research, convolutional neural network (CNN) was used based on colored retinal fundus images for the detection of DR and classification of its stages. CNN can recognize sophisticated features on the retina and provides an automatic diagnosis. The pre-trained VGG-16 CNN model was applied using a transfer learning (TL) approach to utilize the already learned parameters in the detection.

Findings

By conducting different experiments set up with different severity groupings, the achieved results are promising. The best-achieved accuracies for 2-class, 3-class, 4-class and 5-class classifications are 86.5, 80.5, 63.5 and 73.7, respectively.

Originality/value

In this research, VGG-16 was used to detect and classify DR stages using the TL approach. Different combinations of classes were used in the classification of DR severity stages to illustrate the ability of the model to differentiate between the classes and verify the effect of these changes on the performance of the model.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 1 of 1