Search results

1 – 10 of 18
Article
Publication date: 6 December 2022

Sobiya Manzoor, Syed Zameer Hussain, Tawheed Amin, Omar Bashir, Bazila Naseer, Abida Jabeen, Ufaq Fayaz, Naseh Nisar, Aarizoo Mushtaq, Monisa Yousouf, Zahida Naseem and Uzznain Khan

The purpose of this article was to highlight the various methods of extrusion technologies for encapsulation of bioactive components (BACs).

Abstract

Purpose

The purpose of this article was to highlight the various methods of extrusion technologies for encapsulation of bioactive components (BACs).

Design/methodology/approach

BACs provide numerous health-care benefits; however, downsides, including a strong effect of organoleptic properties by reason of the bitterness and acridity of a few components, and also a short shelf-life, limit their application in food. The food industry is still demanding complicated qualities from food ingredients, which were often impossible to obtain without encapsulation such as stability, delayed release, thermal protection and an acceptable sensory profile. Various techniques such as melt injection extrusion, hot-melt extrusion, electrostatic extrusion, co-extrusion and particles from gas-saturated solutions, could be used for maintaining these characteristics.

Findings

Extrusion technology has been well used for encapsulation of bioactive chemicals in an effort to avoid their numerous downsides and to boost their use in food. The count of BACs that could be encapsulated has risen owing to the extrusion technology just as form of encapsulation. Extrusion technique also aids in the devaluation of the fragment size of encapsulated BACs, allowing for greater application in the food business.

Originality/value

The study reported that encapsulating BACs makes them more stable in both the product itself and in the gastrointestinal tract, so using encapsulated BACs would result in a product with stronger preventive properties.

Details

Nutrition & Food Science , vol. 53 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 3 May 2022

Amir A. Abdelsalam, Salwa H. El-Sabbagh, Wael S. Mohamed and Mohsen A. Khozami

This study aims to investigate the swelling behavior, mechanical and thermal properties of ternary rubber blend composites prepared by melt blending based on carbon black…

Abstract

Purpose

This study aims to investigate the swelling behavior, mechanical and thermal properties of ternary rubber blend composites prepared by melt blending based on carbon black (CB)-filled natural rubber (NR)/styrene-butadiene rubber (SBR)/nitrile butadiene rubber (NBR) blends, containing a variety of compatibilizers. Various compatibilizers, maleic acid anhydride (MAH), prepared emulsion and adhesion system (HRH) were used. A series of NR/SBR/NBR blends at a 30/30/40 blend ratio reinforced with 45 phr of CB were prepared using the master-batch method.

Design/methodology/approach

Thermal aging properties of the composites characterized by their aging coefficient and retention in tensile and elongation at break (E.B. %). Thermal degradation of ternary rubber blend composites based on melt blending has been studied using thermogravimetric analysis.

Findings

The swelling coefficient decreased with increased compatibilizer loading. Results also showed that the tensile strength and E.B. (%) decreased with aging over the entire aging period. Additionally, the addition of compatibilizers into the ternary rubber blend composite had slightly improved the thermal stability.

Research limitations/implications

Interactions between the different components of blends at the interfaces have a high impact on the interfacial properties of the rubber blend.

Practical implications

Compatibilizers significantly improve the properties of the resulting composites with the loading of investigated compatibilizers because of the uniform dispersion of CB in the rubber matrix.

Social implications

Using blends in the rubber industry led to the high-efficiency production of low-cost products.

Originality/value

The rubber blending has a significant positive effect on a wide range of applications such as structural applications, aerospace, military, packaging, tires and biomedical, so improving the compatibility of blends will make new materials suitable for new applications.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 June 2022

Fareha Asim and Farhana Naeem

The textile sector is moving towards new technologies, where the application of nanotechnology is offering fabrics with multifunctional properties making fabric odourless…

Abstract

Purpose

The textile sector is moving towards new technologies, where the application of nanotechnology is offering fabrics with multifunctional properties making fabric odourless, hydrophobic, durable and self-cleaning. This aim of this research is to investigate self-cleaning ability of denim fabric with the application of zinc oxide nanoparticles (ZnO NPs) synthesized naturally. The primary focus of this investigation is achieving sustainability mark through green synthesis of ZnO NPs.

Design/methodology/approach

In this analysis, ZnO NPs being one of the metal oxides exhibiting self-cleaning, UV-protective and anti-microbial properties were synthesized naturally using Azadirachta Indica leaves. The prepared NPs were characterized by using X-ray diffraction and scanning electron microscopy analyses confirming their size and crystalline structure. Different formulations were investigated with varying concentration of zinc oxide and auxiliaries onto the denim fabric using pad-dry-cure application technique.

Findings

XRD analysis confirmed the successful green synthesis of ZnO NPs. SEM analysis revealed the homogeneous and hexagonal wurtzite NPs deposition on the denim fabric. It was ascertained that with 5% ZnO NPs and 7% Binder concentrations, the formulation resulted in a smooth and even layer on the denim fabric maintaining the appearance and feel at the same time offers appreciable grading (Grade 4) against the stringent stains of Ketchup, Coffee, Grape and Orange Juice with insignificant change in tensile strength.

Originality/value

In this study, self-cleaning attributes of denim fabric with zinc oxide nano formulations of different composition was studied to achieve promising functional properties in a single step not studied earlier.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 6 March 2024

Madhura Rao, Lea Bilić, Aalt Bast and Alie de Boer

In this case study, we examine how a citrus peel valorising company based in the Netherlands was able to adopt a circular business model while navigating regulatory, managerial…

Abstract

Purpose

In this case study, we examine how a citrus peel valorising company based in the Netherlands was able to adopt a circular business model while navigating regulatory, managerial, and supply chain-related barriers.

Design/methodology/approach

In-depth, semi-structured interviews with key personnel in the company, notes from field observations, photographs of the production process, and documents from a legal judgement served as data for this single, qualitative case study. Data were coded inductively using the in vivo technique and were further developed into four themes and a case description.

Findings

Results from our study indicate that the regulatory and political contexts in the Netherlands were critical to the company’s success. Like in the case of most fruitful industrial symbioses, partnerships founded on mutual trust and economically appealing value propositions played a crucial role in ensuring commercial viability. Collaborating with larger corporations and maintaining transparent communication with stakeholders were also significant contributing factors. Lastly, employees’ outlook towards circularity combined with their willingness to learn new skills were important driving factors as well.

Originality/value

In addition to expanding the scholarship on the adoption of circular business models, this research offers novel insights to policymakers and practitioners. It provides empirical evidence regarding the importance of public awareness, adaptable legislation, and harmonised policy goals for supporting sustainable entrepreneurship in the circular economy.

Details

British Food Journal, vol. 126 no. 13
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 4 December 2023

Simone Alves Monteiro da Franca, Rodrigo Nunes Cavalcanti, Marta S. Madruga, Deyse Alves Pereira, Cristiani Viegas Brandão Grisi, Marciane Magnani, Geany Targino de Souza Pedrosa and Carolina Lima Cavalcanti de Albuquerque

The objective of this study was to evaluate the technical-economic process efficiency of obtaining simultaneous lipo-soluble (LSF) and water-soluble (WSF) fractions from annatto…

Abstract

Purpose

The objective of this study was to evaluate the technical-economic process efficiency of obtaining simultaneous lipo-soluble (LSF) and water-soluble (WSF) fractions from annatto seeds.

Design/methodology/approach

The batches of annatto seeds were submitted to the refrigerated solid-liquid extraction process in four stages: pre-extraction, aqueous extraction, separation by decantation and filtration. After that, LSF and WSF from annatto seeds were obtained. The process efficiency and the quality of LSF and WSF were analyzed in terms of average yield and bioactive compounds (bixin, norbixin, phenolics and flavonoids) and their antioxidant and antimicrobial activities. Furthermore, they were economically evaluated in terms of costs of manufacturing and profitability parameters.

Findings

The process was efficient in terms of overall average yield (LSF = 8.68% and WSF = 2.76%) (w/w) and in terms of quality, mainly with higher average yields of bixin (82.34% in LSF) and norbixin (29.59% in WSF) (w/w). The concentration of bioactive compounds in the fractions promoted an increase in inhibiting free radicals (DPPH* and ABTS*+) and in the ferric-reducing power (FRAP). LSF showed a minimum inhibitory concentration of 0.06 mg mL-1 for S. aureus and 0.13 mg mL-1 for S. Typhimurium and S. Enteritidis. The lowest manufacturing costs were obtained for the LSF due to its higher extraction yield compared to the WSF. Plants on an industrial scale of 100 and 1000 L were considered economically viable, with a return on investment of 5 and 2 years.

Originality/value

Thus, fractions (WSF and LSF) can be applied as natural additives, as sources of bioactive compounds for nutraceutical and/or pharmaceutical, and in the development of other innovative processes. These results have practical applicability for pharmaceutical and food industry.

Highlights

 

  1. Green processing of annatto seeds obtains fractions rich in antioxidant compounds.

  2. Efficiently presents a high yield of bixin and other bioactive compounds.

  3. Effective in concentrating compounds that inhibit microbial growth.

  4. Fractions are more accessible sources of bioactive compounds for isolation.

  5. Cost of manufacturing (COM) and profitability are studied.

Green processing of annatto seeds obtains fractions rich in antioxidant compounds.

Efficiently presents a high yield of bixin and other bioactive compounds.

Effective in concentrating compounds that inhibit microbial growth.

Fractions are more accessible sources of bioactive compounds for isolation.

Cost of manufacturing (COM) and profitability are studied.

Details

British Food Journal, vol. 126 no. 3
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 25 March 2024

Mostafa Abdel-Hamied, Ahmed A.M. Abdelhafez and Gomaa Abdel-Maksoud

This study aims to focus on the main materials used in consolidation processes of illuminated paper manuscripts and leather binding.

Abstract

Purpose

This study aims to focus on the main materials used in consolidation processes of illuminated paper manuscripts and leather binding.

Design/methodology/approach

For each material, chemical structure, chemical composition, molecular formula, solubility, advantages, disadvantages and its role in treatment process are presented.

Findings

This study concluded that carboxy methyl cellulose, hydroxy propyl cellulose, methyl cellulose, cellulose acetate, nanocrystalline cellulose, funori, sturgeon glue, poly vinyl alcohol, chitosan, chitosan nanoparticles (NPs), gelatin, aquazol, paraloid B72 and hydroxyapatite NPs were the most common and important materials used for the consolidation of illuminated paper manuscripts. For the leather bindings, hydroxy propyl cellulose, polyethylene glycol, oligomeric melamine-formaldehyde resin, acrylic wax SC6000, pliantex, paraloid B67 and B72, silicone oil and collagen NPs are the most consolidants used.

Originality/value

Illuminated paper manuscripts with leather binding are considered one of the most important objects in libraries, museums and storehouses. The uncontrolled conditions and other deterioration factors inside the libraries and storehouses lead to degradation of these artifacts. The brittleness, fragility and weakness are considered the most common deterioration aspects of illuminated paper manuscripts and leather binding. Therefore, the consolidation process became vital and important to solve this problem. This study presents the main materials used for consolidation process of illuminated paper manuscripts and leather bindings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 February 2024

Chinkle Kaur and Jasleen Kaur

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and…

Abstract

Purpose

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and admiration globally due to their super resilience in diverse climates and significant nutritional benefits. As millets are renowned for their nutritional richness, the demand for millet-based products increases. Hence, this paper aims in identifying the growing need for innovative processing techniques that not only preserve their nutritional content but also extend their shelf life.

Design/methodology/approach

In traditional times, heat was the only means of cooking and processing of the foods, but the amount of damage they used to cause to the sensorial and nutritional properties was huge. Millets’ sensitivity toward heat poses a challenge, as their composition is susceptible to disruption during various heat treatments and manufacturing processes. To cater to this drawback while ensuring the prolonged shelf life and nutrient preservation, various innovative approaches such as cold plasma, infrared technology and high hydrostatic pressure (HPP) processing are being widely used. These new methodologies aim on inactivating the microorganisms that have been developed within the food, providing the unprocessed, raw and natural form of nutrients in food products.

Findings

Among these approaches, nonthermal technology has emerged as a key player that prioritizes brief treatment periods and avoids the use of high temperatures. Nonthermal techniques (cold plasma, infrared radiation, HPP processing, ultra-sonication and pulsed electric field) facilitate the conservation of millet’s nutritional integrity by minimizing the degradation of heat-sensitive nutrients like vitamins and antioxidants. Acknowledging the potential applications and processing efficiency of nonthermal techniques, the food industry has embarked on substantial investments in this technology. The present study provides an in-depth exploration of the array of nonthermal technologies used in the food industry and their effects on the physical and chemical composition of diverse millet varieties.

Originality/value

Nonthermal techniques, compared to conventional thermal methods, are environmentally sound processes that contribute to energy conservation. However, these conveniences are accompanied by challenges, and this review not only elucidates these challenges but also focuses on the future implications of nonthermal techniques.

Article
Publication date: 29 February 2024

Alissa Nicole DeBruyne and Sharareh Hekmat

The purpose of this study is to determine the viability of Lacticaseibacillus rhamnosus GR-1 (L. rhamnosus GR-1) in five yogurt samples with or without quinoa, chickpea, soybean…

Abstract

Purpose

The purpose of this study is to determine the viability of Lacticaseibacillus rhamnosus GR-1 (L. rhamnosus GR-1) in five yogurt samples with or without quinoa, chickpea, soybean and rice flour over various fermentation periods and refrigerated storage durations, with a focus on exploring the potential of functional foods, which provide health benefits beyond nutritional value. Additionally, the study aimed to evaluate consumer acceptance of yogurt fortified with functional flour. Using a nine-point hedonic scale, from 1 (dislike extremely) to 9 (like extremely), participants rated appearance, flavour, texture and overall acceptability.

Design/methodology/approach

The samples were inoculated with the probiotic strain L. rhamnosus GR-1 and fermented for 0, 2, 4 and 6 h at 38°C, followed by refrigerated storage at 4°C for 1, 15 and 30 days, respectively. Microbial enumeration was performed throughout fermentation and storage to assess the viability of L. rhamnosus GR-1. A sensory evaluation involving 86 participants was conducted to assess the consumer acceptability of the yogurt samples.

Findings

Notably, L. rhamnosus GR-1 achieved viable counts of 108 colony-forming units per mL in all treatments at all fermentation time points. Over the 30-day storage period, no statistically significant differences (p < 0.05) in average pH values were observed among the five treatments, and within each treatment, pH levels remained stable, with an overall mean of 4.2 ± 0.64. Treatment 4, which featured rice flour fortification, received higher hedonic scores from sensory panellists in terms of appearance, flavour, texture and overall acceptability. These findings indicate that incorporating functional flours in conjunction with cow’s milk effectively promotes and preserves the viability of L. rhamnosus GR-1 in yogurt.

Originality/value

Exploring the potential of probiotic yogurt enriched with diverse functional flours to enhance nutritional content and health benefits as well as attract new consumers, this study addressed a critical gap in understanding consumer perceptions and generated insights for creating innovative and health-promoting dairy products.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 28 February 2023

Manish Tiwari, Anil Panghal, Vipul Mittal and Ravi Gupta

The purpose of this paper is to review phytochemical potential of acacia and its associated health advantages. Acacia a moderate-sized, deciduous tree and recognised as…

Abstract

Purpose

The purpose of this paper is to review phytochemical potential of acacia and its associated health advantages. Acacia a moderate-sized, deciduous tree and recognised as health-promoting species because of availability of essential bioactive components. The bioactive compounds such as tannins, flavonoids, alkaloids, fatty acids and polysaccharides (gums) present in the plant parts of acacia, namely, bark, leaves, flowers, fruits, twigs and seeds, have medicinal value and thus are used to overlay the formulations of plant-based drugs and value-added foods.

Design/methodology/approach

Major well-known bibliometric information sources such as Web of Science, Scopus, Mendeley and Google Scholar were searched with keywords such as “nutrition value of acacia”, “bioactive compounds”, “health benefits”, “processing and safety” were chosen to obtain a database of 1,428 papers. The search considered papers in the English language from the past 18 years of publication in journals (2004–2022). The article selection process consisted of the screening of titles and abstracts, based on inclusion and exclusion criteria. Articles that did not have acacia components as a study objective were taken into consideration for exclusion. A final database of 87 scientific sources was made after sorting and classifying them according to different criteria based on topic relevance, country of origin and year of publication. Articles with other random descriptors were also searched to complement the discussion of the results obtained.

Findings

The literature reflected that acacia contains all necessary phytochemicals like polyphenols, flavonoids, terpenoids, glucosinolates, alkaloids and carotenoids along with essential macro, micro-nutrients. Furthermore, processing methods such as soaking, cooking, roasting and dehusking significantly reduced the anti-nutritional factors present in acacia seeds of different species. This review also focused on the processing methods that are used to eliminate or lower down the anti-nutritional factors from the seeds. Previous findings related to acacia plant parts with respect to food development are explored and mentioned.

Originality/value

This review emphasised mainly on recent studies that had been reported on ethnomedical acacia plants therapeutically, commercially and exponentially for further studies to increase the utilisation in food processing.

Details

Nutrition & Food Science , vol. 53 no. 7
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 21 February 2024

Bahareh Babaie, Mohsen Najafi and Maryam Ataeefard

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production…

Abstract

Purpose

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production method and material formulation. Chemically in situ polymerization methods are currently preferred. This paper aims to optimize the characteristics of a composite produced through emulsion polymerization using common raw materials for electrophotographic toner production.

Design/methodology/approach

Emulsion polymerization provides the possibility to optimize the physical and color properties of the final products. Response surface methodology (RSM) was used to optimize variables affecting particle size (PS), PS distribution (PSD), glass transition temperature (Tg°C), color properties (ΔE) and monomer conversion. Box–Behnken experimental design with three levels of styrene and butyl acrylate monomer ratios, carbon black pigment and sodium dodecyl sulfate surfactant was used for RSM optimization. Additionally, thermogravimetric analysis and surface morphology of composite particles were examined.

Findings

The results indicated that colorants with small PS, narrow PSDs, spherical shape morphology, acceptable thermal and color properties and a high percentage of conversion could be easily prepared by optimization of material parameters in this method. The anticipated outcome of the present inquiry holds promise as a guiding beacon toward the realization of electrographic toner of superior quality and exceptional efficacy, a vital factor for streamlined mass production.

Originality/value

To the best of the authors’ knowledge, for the first time, material parameters were evaluated to determine their impact on the characteristics of emulsion polymerized toner composites.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 18