Search results

1 – 10 of 88
Open Access
Article
Publication date: 19 January 2024

Fuzhao Chen, Zhilei Chen, Qian Chen, Tianyang Gao, Mingyan Dai, Xiang Zhang and Lin Sun

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production…

Abstract

Purpose

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder. The tolerance leads to imprecise brake control, so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system. This paper aims to present improved variational mode decomposition (VMD) algorithm, which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.

Design/methodology/approach

The VMD algorithm plays a pivotal role in the preliminary phase, employing mode decomposition techniques to decompose the motor speed signals. Afterward, the error energy algorithm precision is utilized to extract abnormal features, leveraging the practical intrinsic mode functions, eliminating extraneous noise and enhancing the signal’s fidelity. This refined signal then becomes the basis for fault analysis. In the analytical step, the cepstrum is employed to calculate the formant and envelope of the reconstructed signal. By scrutinizing the formant and envelope, the fault point within the electromechanical brake system is precisely identified, contributing to a sophisticated and accurate fault diagnosis.

Findings

This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake (EMB) motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction. The signal is reconstructed according to the effective intrinsic mode functions (IMFS) component of removing noise, and the formant and envelope are calculated by cepstrum to locate the fault point. Experiments show that the empirical mode decomposition (EMD) algorithm can effectively decompose the original speed signal. After feature extraction, signal enhancement and fault identification, the motor mechanical fault point can be accurately located. This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.

Originality/value

By using this improved VMD algorithm, the electromechanical brake system can precisely identify the rotational anomaly of the motor. This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled. Compared with the conventional motor diagnosis method, this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs. Moreover, the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.

Article
Publication date: 21 March 2023

Manikandan R. and Raja Singh R.

The purpose of this paper is to prevent the destruction of other parts of a wind energy conversion system because of faults, the diagnosis of insulated-gate bipolar transistor…

Abstract

Purpose

The purpose of this paper is to prevent the destruction of other parts of a wind energy conversion system because of faults, the diagnosis of insulated-gate bipolar transistor (IGBT) faults has become an essential topic of study. Demand for sustainable energy sources has been prompted by rising environmental pollution and energy requirements. Renewable energy has been identified as a viable substitute for conventional fossil fuel energy generation. Because of its rapid installation time and adaptable expenditure for construction scale, wind energy has emerged as a great energy resource. Power converter failure is particularly significant for the reliable operation of wind power conversion systems because it not only has a high yearly fault rate but also a prolonged downtime. The power converters will continue to operate even after the failure, especially the open-circuit fault, endangering their other parts and impairing their functionality.

Design/methodology/approach

The most widely used signal processing methods for locating open-switch faults in power devices are the short-time Fourier transform and wavelet transform (WT) – based on time–frequency analysis. To increase their effectiveness, these methods necessitate the intensive use of computational resources. This study suggests a fault detection technique using empirical mode decomposition (EMD) that examines the phase currents from a power inverter. Furthermore, the intrinsic mode function’s relative energy entropy (REE) and simple logical operations are used to locate IGBT open switch failures.

Findings

The presented scheme successfully locates and detects 21 various classes of IGBT faults that could arise in a two-level three-phase voltage source inverter (VSI). To verify the efficacy of the proposed fault diagnosis (FD) scheme, the test is performed under various operating conditions of the power converter and induction motor load. The proposed method outperforms existing FD schemes in the literature in terms of fault coverage and robustness.

Originality/value

This study introduces an EMD–IMF–REE-based FD method for VSIs in wind turbine systems, which enhances the effectiveness and robustness of the FD method.

Article
Publication date: 1 September 2023

Shaghayegh Abolmakarem, Farshid Abdi, Kaveh Khalili-Damghani and Hosein Didehkhani

This paper aims to propose an improved version of portfolio optimization model through the prediction of the future behavior of stock returns using a combined wavelet-based long…

101

Abstract

Purpose

This paper aims to propose an improved version of portfolio optimization model through the prediction of the future behavior of stock returns using a combined wavelet-based long short-term memory (LSTM).

Design/methodology/approach

First, data are gathered and divided into two parts, namely, “past data” and “real data.” In the second stage, the wavelet transform is proposed to decompose the stock closing price time series into a set of coefficients. The derived coefficients are taken as an input to the LSTM model to predict the stock closing price time series and the “future data” is created. In the third stage, the mean-variance portfolio optimization problem (MVPOP) has iteratively been run using the “past,” “future” and “real” data sets. The epsilon-constraint method is adapted to generate the Pareto front for all three runes of MVPOP.

Findings

The real daily stock closing price time series of six stocks from the FTSE 100 between January 1, 2000, and December 30, 2020, is used to check the applicability and efficacy of the proposed approach. The comparisons of “future,” “past” and “real” Pareto fronts showed that the “future” Pareto front is closer to the “real” Pareto front. This demonstrates the efficacy and applicability of proposed approach.

Originality/value

Most of the classic Markowitz-based portfolio optimization models used past information to estimate the associated parameters of the stocks. This study revealed that the prediction of the future behavior of stock returns using a combined wavelet-based LSTM improved the performance of the portfolio.

Details

Journal of Modelling in Management, vol. 19 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 12 April 2024

Delin Chen

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Abstract

Purpose

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Design/methodology/approach

The microtexture was processed using laser processing, while the diamond-like carbon (DLC) film was applied through magnetron sputtering; the experimental platform of friction vibration was established, the frictional and vibrational properties of different geometric parameters were tested; the data signals of vibrational acceleration and frictional torque were collected and processed using data acquisition instrument. The entropy characteristic parameters of 3D vibrational acceleration were extracted based on wavelet packet decomposition method. The end-face topography was measured with ST400 three-dimensional noncontact surface topography instrument.

Findings

The geometry of pits plays a key role in influencing friction performance; the permutation entropy and fuzzy entropy of the vibration acceleration signal changed with variations in microtextured parameters. A textured surface with appropriately size parameters can trap debris, enhance the dynamic pressure effect, reduce impact between the friction interfaces and improve the frictional vibrational performance. In this research, microtextured surface with Φ150 µm-10% and Φ200 µm-5% can effectively reduce friction and vibration between the end faces of a dry gas seal.

Originality/value

DLC film improves the hardness of seal ring end face, and microtexture improves the dynamic effect; the tribological behavior monitoring can be realized by analyzing the characteristics of vibration acceleration sensitive parameter with friction state. The findings will provide a basis for further research in the field of tribology and the microtexture optimization of dry gas seal ring end face.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0389/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 April 2024

Haiyan Song and Hanyuan Zhang

The aim of this paper is to provide a narrative review of previous research on tourism demand modelling and forecasting and potential future developments.

Abstract

Purpose

The aim of this paper is to provide a narrative review of previous research on tourism demand modelling and forecasting and potential future developments.

Design/methodology/approach

A narrative approach is taken in this review of the current body of knowledge.

Findings

Significant methodological advancements in tourism demand modelling and forecasting over the past two decades are identified.

Originality/value

The distinct characteristics of the various methods applied in the field are summarised and a research agenda for future investigations is proposed.

目的

本文旨在对先前关于旅游需求建模和预测的研究进行叙述性回顾并对未来潜在发展进行展望。

设计/方法

本文采用叙述性回顾方法对当前知识体系进行了评论。

研究结果

本文确认了过去二十年旅游需求建模和预测方法论方面的重要进展。

独创性

本文总结了该领域应用的各种方法的独特特征, 并对未来研究提出了建议。

Objetivo

El objetivo de este documento es ofrecer una revisión narrativa de la investigación previa sobre modelización y previsión de la demanda turística y los posibles desarrollos futuros.

Diseño/metodología/enfoque

En esta revisión del marco actual de conocimientos sobre modelización y previsión de la demanda turística y los posibles desarrollos futuros,se adopta un enfoque narrativo.

Resultados

Se identifican avances metodológicos significativos en la modelización y previsión de la demanda turística en las dos últimas décadas.

Originalidad

Se resumen las características propias de los diversos métodos aplicados en este campo y se propone una agenda de investigación para futuros trabajos.

Open Access
Article
Publication date: 31 May 2023

Xiaojie Xu and Yun Zhang

For policymakers and participants of financial markets, predictions of trading volumes of financial indices are important issues. This study aims to address such a prediction…

Abstract

Purpose

For policymakers and participants of financial markets, predictions of trading volumes of financial indices are important issues. This study aims to address such a prediction problem based on the CSI300 nearby futures by using high-frequency data recorded each minute from the launch date of the futures to roughly two years after constituent stocks of the futures all becoming shortable, a time period witnessing significantly increased trading activities.

Design/methodology/approach

In order to answer questions as follows, this study adopts the neural network for modeling the irregular trading volume series of the CSI300 nearby futures: are the research able to utilize the lags of the trading volume series to make predictions; if this is the case, how far can the predictions go and how accurate can the predictions be; can this research use predictive information from trading volumes of the CSI300 spot and first distant futures for improving prediction accuracy and what is the corresponding magnitude; how sophisticated is the model; and how robust are its predictions?

Findings

The results of this study show that a simple neural network model could be constructed with 10 hidden neurons to robustly predict the trading volume of the CSI300 nearby futures using 1–20 min ahead trading volume data. The model leads to the root mean square error of about 955 contracts. Utilizing additional predictive information from trading volumes of the CSI300 spot and first distant futures could further benefit prediction accuracy and the magnitude of improvements is about 1–2%. This benefit is particularly significant when the trading volume of the CSI300 nearby futures is close to be zero. Another benefit, at the cost of the model becoming slightly more sophisticated with more hidden neurons, is that predictions could be generated through 1–30 min ahead trading volume data.

Originality/value

The results of this study could be used for multiple purposes, including designing financial index trading systems and platforms, monitoring systematic financial risks and building financial index price forecasting.

Details

Asian Journal of Economics and Banking, vol. 8 no. 1
Type: Research Article
ISSN: 2615-9821

Keywords

Article
Publication date: 7 July 2023

Xiaojie Xu and Yun Zhang

The Chinese housing market has witnessed rapid growth during the past decade and the significance of housing price forecasting has undoubtedly elevated, becoming an important…

Abstract

Purpose

The Chinese housing market has witnessed rapid growth during the past decade and the significance of housing price forecasting has undoubtedly elevated, becoming an important issue to investors and policymakers. This study aims to examine neural networks (NNs) for office property price index forecasting from 10 major Chinese cities for July 2005–April 2021.

Design/methodology/approach

The authors aim at building simple and accurate NNs to contribute to pure technical forecasts of the Chinese office property market. To facilitate the analysis, the authors explore different model settings over algorithms, delays, hidden neurons and data-spitting ratios.

Findings

The authors reach a simple NN with three delays and three hidden neurons, which leads to stable performance of about 1.45% average relative root mean square error across the 10 cities for the training, validation and testing phases.

Originality/value

The results could be used on a standalone basis or combined with fundamental forecasts to form perspectives of office property price trends and conduct policy analysis.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 10 April 2024

Yuting Wang, Guodong Sun, Haisheng Wang and Bobo Jian

The purpose of this study is to solve the issues of time-consuming and complicated computation of traditional measures, as well as the underutilization of two-dimensional (2D…

Abstract

Purpose

The purpose of this study is to solve the issues of time-consuming and complicated computation of traditional measures, as well as the underutilization of two-dimensional (2D) phase-trajectory projection matrix, so a new set of features were proposed based on the projection of attractors trajectory to characterize the friction-induced attractors and to reveal the tribological behavior during the running-in process.

Design/methodology/approach

The frictional running-in experiments were conducted by sliding a ball against a static disk, and the friction coefficient was collected to reconstruct the friction-induced attractors. The projection of the attractors in 2D subspace was then mapped and the distribution of phase points was adapted to conduct the feature extraction.

Findings

The evolution of the proposed moment measures could be described as “initial rapid decrease/increase- midterm gradual decrease/increase- finally stable,” which could effectively reveal the convergence degree of the friction-induced attractors. Moreover, the measures could also describe the relative position of the attractors in phase–space domain, which reveal the amplitude evolution of signals to some extent.

Originality/value

The proposed measures could reveal the evolution of tribological behaviors during the running-in process and meet the more precise real-time running-in status identification.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 March 2024

Manpreet Kaur, Amit Kumar and Anil Kumar Mittal

In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered…

Abstract

Purpose

In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered considerable attention from researchers worldwide. The present study aims to synthesize the research field concerning ANN applications in the stock market to a) systematically map the research trends, key contributors, scientific collaborations, and knowledge structure, and b) uncover the challenges and future research areas in the field.

Design/methodology/approach

To provide a comprehensive appraisal of the extant literature, the study adopted the mixed approach of quantitative (bibliometric analysis) and qualitative (intensive review of influential articles) assessment to analyse 1,483 articles published in the Scopus and Web of Science indexed journals during 1992–2022. The bibliographic data was processed and analysed using VOSviewer and R software.

Findings

The results revealed the proliferation of articles since 2018, with China as the dominant country, Wang J as the most prolific author, “Expert Systems with Applications” as the leading journal, “computer science” as the dominant subject area, and “stock price forecasting” as the predominantly explored research theme in the field. Furthermore, “portfolio optimization”, “sentiment analysis”, “algorithmic trading”, and “crisis prediction” are found as recently emerged research areas.

Originality/value

To the best of the authors’ knowledge, the current study is a novel attempt that holistically assesses the existing literature on ANN applications throughout the entire domain of stock market. The main contribution of the current study lies in discussing the challenges along with the viable methodological solutions and providing application area-wise knowledge gaps for future studies.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 3 November 2022

Vinod Nistane

Rolling element bearings (REBs) are commonly used in rotating machinery such as pumps, motors, fans and other machineries. The REBs deteriorate over life cycle time. To know the…

Abstract

Purpose

Rolling element bearings (REBs) are commonly used in rotating machinery such as pumps, motors, fans and other machineries. The REBs deteriorate over life cycle time. To know the amount of deteriorate at any time, this paper aims to present a prognostics approach based on integrating optimize health indicator (OHI) and machine learning algorithm.

Design/methodology/approach

Proposed optimum prediction model would be used to evaluate the remaining useful life (RUL) of REBs. Initially, signal raw data are preprocessing through mother wavelet transform; after that, the primary fault features are extracted. Further, these features process to elevate the clarity of features using the random forest algorithm. Based on variable importance of features, the best representation of fault features is selected. Optimize the selected feature by adjusting weight vector using optimization techniques such as genetic algorithm (GA), sequential quadratic optimization (SQO) and multiobjective optimization (MOO). New OHIs are determined and apply to train the network. Finally, optimum predictive models are developed by integrating OHI and artificial neural network (ANN), K-mean clustering (KMC) (i.e. OHI–GA–ANN, OHI–SQO–ANN, OHI–MOO–ANN, OHI–GA–KMC, OHI–SQO–KMC and OHI–MOO–KMC).

Findings

Optimum prediction models performance are recorded and compared with the actual value. Finally, based on error term values best optimum prediction model is proposed for evaluation of RUL of REBs.

Originality/value

Proposed OHI–GA–KMC model is compared in terms of error values with previously published work. RUL predicted by OHI–GA–KMC model is smaller, giving the advantage of this method.

1 – 10 of 88