Search results

1 – 10 of over 1000
Article
Publication date: 12 March 2024

Yimin Yang, Xuhui Deng, Zilong Wang and Lulu Yang

This paper aims to analyze the role and advantages of knowledge resources in the carbon emission reduction of the industrial chain, and how it can be used to promote the carbon…

Abstract

Purpose

This paper aims to analyze the role and advantages of knowledge resources in the carbon emission reduction of the industrial chain, and how it can be used to promote the carbon emission reduction of the industrial chain, so that the industry can better achieve the saving of energy and the reduction of emission.

Design/methodology/approach

This paper argues that the traditional resource-plundering industrial chain production method can no longer meet the needs of sustainable development of the green and low-carbon industrial chain, and builds the coupling and coordination of knowledge technology innovation drive and industrial chain carbon emission reduction mechanism, in the four dimensions of industrial chain organization, government support, internet support and staff brainstorming, put forward suggestions for knowledge resources to drive carbon emission reduction in the industrial chain.

Findings

This paper holds that the use of knowledge resource advantages can better help industrial chain enterprises to carry out technological innovation, knowledge resource digital platform construction, knowledge resource overflow and transfer, application and management of network information technology, so as to reduce carbon emission in industrial chain.

Originality/value

This paper contributes to the discussion about the high-quality implementation of the revitalization strategy of the industrial chain and also deepens research on the knowledge resource-driven carbon emission reduction of the industrial chain. Further, this paper enriches the role of knowledge resources in the industrial industry, and the theoretical results support the advantages of knowledge resource in the field of chain carbon emission reduction.

Details

Journal of Knowledge Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 5 April 2024

Qiang Du, Yerong Zhang, Lingyuan Zeng, Yiming Ma and Shasha Li

Prefabricated buildings (PBs) have proven to effectively mitigate carbon emissions in the construction industry. Existing studies have analyzed the environmental performance of…

Abstract

Purpose

Prefabricated buildings (PBs) have proven to effectively mitigate carbon emissions in the construction industry. Existing studies have analyzed the environmental performance of PBs considering the shift in construction methods, ignoring the emissions abatement effects of the low-carbon practices adopted by participants in the prefabricated building supply chain (PBSC). Thus, it is challenging to exploit the environmental advantages of PBs. To further reveal the carbon reduction potential of PBs and assist participants in making low-carbon practice strategy decisions, this paper constructs a system dynamics (SD) model to explore the performance of PBSC in low-carbon practices.

Design/methodology/approach

This study adopts the SD approach to integrate the complex dynamic relationship between variables and explicitly considers the environmental and economic impacts of PBSC to explore the carbon emission reduction effects of low-carbon practices by enterprises under environmental policies from the supply chain perspective.

Findings

Results show that with the advance of prefabrication level, the carbon emissions from production and transportation processes increase, and the total carbon emissions of PBSC show an upward trend. Low-carbon practices of rational transportation route planning and carbon-reduction energy investment can effectively reduce carbon emissions with negative economic impacts on transportation enterprises. The application of sustainable materials in low-carbon practices is both economically and environmentally friendly. In addition, carbon tax does not always promote the implementation of low-carbon practices, and the improvement of enterprises' environmental awareness can further strengthen the effect of low-carbon practices.

Originality/value

This study dynamically assesses the carbon reduction effects of low-carbon practices in PBSC, informing the low-carbon decision-making of participants in building construction projects and guiding the government to formulate environmental policies.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 January 2024

Xiaozhuang Jiang, Licheng Sun and Yushi Wang

This paper aims to refine the mechanisms affecting the two-way technology spillover and carbon transfer interactions between supply chain enterprises, and to guide their reduction…

Abstract

Purpose

This paper aims to refine the mechanisms affecting the two-way technology spillover and carbon transfer interactions between supply chain enterprises, and to guide their reduction of carbon emissions.

Design/methodology/approach

This study formulates a supplier-led Stackelberg game model to explore the effects of the interactions between two-way technology spillover effects and carbon transfers in decentralized and centralized decision-making scenarios. The optimized Shapley value is introduced to coordinate across the supply chain and determine the overall profits lost in the decentralized scenario.

Findings

Emission reductions by the low-carbon manufacturer are negatively correlated with the carbon transfers. Vertical technology spillovers promote carbon reduction, whereas horizontal technology spillovers inhibit it. The vertical technology spillovers amplify the negative effects of the carbon transfers, whereas the horizontal technology spillovers alleviate these negative effects. When the vertical technology spillover effect is strong or the horizontal technology spillover effect is weak in the centralized scenario, the carbon reduction is negatively correlated with the carbon transfers. Conversely, when the vertical technology spillover effect is weak or the horizontal technology spillover effect is strong, the enterprise’s carbon reduction is positively correlated with the carbon transfers. An optimized Shapley value can coordinate the supply chain.

Originality/value

This study examines the effects of carbon transfers on enterprises from a micro-perspective and distinguishes between vertical and horizontal technology spillovers to explore how carbon transfers and different types of technology spillovers affect enterprises’ decisions to reduce carbon emissions.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 23 January 2024

Feng Chen, Suxiu Xu and Yue Zhai

Promoting electric vehicles (EVs) is an effective way to achieve carbon neutrality. If EVs are widely adopted, this will undoubtedly be good for the environment. The purpose of…

Abstract

Purpose

Promoting electric vehicles (EVs) is an effective way to achieve carbon neutrality. If EVs are widely adopted, this will undoubtedly be good for the environment. The purpose of this study is to analyze the impact of network externalities and subsidy on the strategies of manufacturer under a carbon neutrality constraint.

Design/methodology/approach

In this paper, the authors propose a game-theoretic framework in an EVs supply chain consisting of a government, a manufacturer and a group of consumers. The authors examine two subsidy options and explain the choice of optimal strategies for government and manufacturer.

Findings

First, the authors find that the both network externalities of charging stations and government subsidy can promote the EV market. Second, under a relaxed carbon neutrality constraint, even if the government’s purchase subsidy investment is larger than the carbon emission reduction technology subsidy investment, the purchase subsidy policy is still optimal. Third, under a strict carbon neutrality constraint, when the cost coefficient of carbon emission reduction and the effectiveness of carbon emission reduction technology are larger, social welfare will instead decrease with the increase of the effectiveness of emission reduction technology and then, the manufacturer’s investment in carbon emission reduction technology is lower. In the extended model, the authors find the effectiveness of carbon emission reduction technology can also promote the EV market and social welfare (or consumer surplus) is the same whatever the subsidy strategy.

Practical implications

The network externalities of charging stations and the subsidy effect of the government have a superimposition effect on the promotion of EVs. When the network effect of charging stations is relatively strong, government can withdraw from the subsidized market. When the network effect of charging stations is relatively weak, government can intervene appropriately.

Originality/value

Comparing previous studies, this study reveals the impact of government intervention, network effects and carbon neutrality constraints on the EV supply chain. From a sustainability perspective, these insights are compelling for both EV manufacturers and policymakers.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 19 October 2022

Fariba Ramezani, Amir Arjomandi and Charles Harvie

As a by-product of the production process, emissions can follow output fluctuations. Hence, disregarding the relationship between economic fluctuations and emissions could result…

Abstract

Purpose

As a by-product of the production process, emissions can follow output fluctuations. Hence, disregarding the relationship between economic fluctuations and emissions could result in undesirable environmental outcomes. This study aims to investigate the environmental and economic effects of abatement subsidies on overall emissions during business cycles in Australia.

Design/methodology/approach

A real business cycle (RBC) model is devised and parameterised in this paper. RBC models have been recently introduced to environmental policy analysis, and this study contributes to the literature by investigating the effects of a potential subsidy policy in an RBC framework. The model is also calibrated and provides solutions for the Australian economy.

Findings

The authors find that under a steady-state situation, supporting abatement can result in reducing emissions by 6.45% while it imposes welfare costs to the economy (by 0.61%). Simulation results show that an optimal abatement policy should be pro-cyclical, with the abatement subsidy increasing during expansions and decreasing during recessions. As well, in a subsidy policy setting, emissions would react pro-cyclically, i.e. emissions increase (decrease) when the gross domestic product increases (decreases). The abatement reaction by firms, however, is different, because when a positive productivity shock occurs, firms reduce abatement and allocate resources to production. Nonetheless, as time passes, the increased subsidy provides a strong enough incentive to allocate resources to abatement and, subsequently, abatement increases.

Originality/value

This paper investigates how an emission reduction subsidy should be adapted to macroeconomic fluctuations so that it can limit variations in emissions.

Details

Studies in Economics and Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1086-7376

Keywords

Open Access
Article
Publication date: 15 June 2022

Alina Steblyanskaya, Mingye Ai, Artem Denisov, Olga Efimova and Maksim Rybachuk

Understanding China's carbon dioxide (C…

Abstract

Purpose

Understanding China's carbon dioxide (CO2) emission status is crucial for getting Carbon Neutrality status. The purpose of the paper is to calculate two possible scenarios for CO2 emission distribution and calculated input-output flows of CO2 emissions for every 31 China provinces for 2012, 2015 and 2017 years.

Design/methodology/approach

In this study using the input and output (IO) table's data for the selected years, the authors found the volume of CO2 emissions per one Yuan of revenue for the industry in 2012 and the coefficient of emission reduction compared to 2012.

Findings

Results show that in the industries with a huge volume of CO2 emissions, such as “Mining and washing of coal”, the authors cannot observe the reduction processes for years. Industries where emissions are being reduced are “Processing of petroleum, coking, nuclear fuel”, “Production and distribution of electric power and heat power”, “Agriculture, Forestry, Animal Husbandry and Fishery”. For the “construction” industry the situation with emissions did not change.

Originality/value

“Transport, storage, and postal services” and “Smelting and processing of metals” industries in China has the second place concerning emissions, but over the past period, emissions have been sufficiently reduced. “Construction” industry produces a lot of emissions, but this industry does not carry products characterized by large emissions from other industries. Authors can observe that Jiangsu produces a lot of CO2 emissions, but they do not take products characterized by significant emissions from other provinces. Shandong produces a lot of emissions and consumes many of products characterized by large emissions from other provinces. However, Shandong showed a reduction in CO2 emissions from 2012 to 2017.

Details

PSU Research Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2399-1747

Keywords

Article
Publication date: 30 May 2023

M. Cristina De Stefano and Maria J. Montes-Sancho

Climate change requires the reduction of direct and indirect greenhouse gas (GHG) emissions, a task that seems to clash with increasing supply chain complexity. This study aims to…

Abstract

Purpose

Climate change requires the reduction of direct and indirect greenhouse gas (GHG) emissions, a task that seems to clash with increasing supply chain complexity. This study aims to analyse the upstream supply chain complexity dimensions suggesting the importance of understanding the information processing that these may entail. Reducing equivocality can be an issue in some dimensions, requiring the introduction of written guidelines to moderate the effects of supply chain complexity dimensions on GHG emissions at the firm and supply chain level.

Design/methodology/approach

A three-year panel data was built with information obtained from Bloomberg, Trucost and Compustat. Hypotheses were tested using random effect regressions with robust standard errors on a sample of 394 SP500 companies, addressing endogeneity through the control function approach.

Findings

Horizontal complexity reduces GHG emissions at the firm level, whereas vertical and spatial complexity dimensions increase GHG emissions at the firm and supply chain level. Although the introduction of written guidelines neutralises the negative effects of vertical complexity on firm and supply chain GHG emissions, it is not sufficient in the presence of spatial complexity.

Originality/value

This paper offers novel insights by suggesting that managers need to reconcile the potential trade-off effects on GHG emissions that horizontally complex supply chain structures can present. Their priority in vertically and spatially complex supply chain structures should be to reduce equivocality.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 1 November 2023

Suhaib Arogundade, Mohammed Dulaimi, Saheed Ajayi, Abdullahi Saka and Olusegun Ilori

Extant studies have discussed numerous carbon reduction drivers, but there is a dearth of holistic review and understanding of the dynamic interrelationships between the drivers…

Abstract

Purpose

Extant studies have discussed numerous carbon reduction drivers, but there is a dearth of holistic review and understanding of the dynamic interrelationships between the drivers from a system perspective. Thus, this study aims to bridge that gap.

Design/methodology/approach

The study conducted a review using Preferred Reporting Items for Systematic Reviews and Meta-Analyses and adopted interpretive structural modelling (ISM) to analyse and prioritise the drivers.

Findings

Eighteen drivers were identified and grouped into five, namely, policy instruments, bid-related, cost and risk, education and training, and reward and penalty drivers. The ISM revealed two hierarchical levels of the drivers with only higher cost of electricity/fuel on the higher level, making it the most important driver that could influence others.

Practical implications

The study presents an overview of decarbonisation drivers in the literature and would be of benefit to the government and stakeholders towards achieving net zero emissions in the construction industry.

Originality/value

The findings of the study present drivers of carbon reduction and prioritise and categorise them for tailored interventions within the construction sector. Also, it could serve as foundational knowledge for further study in the construction process decarbonisation research area.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 22 April 2024

Hamzeh Al Amosh and Saleh F.A. Khatib

Climate change is one of our time’s most pressing global environmental challenges, and environmental innovation is critical to addressing it. This study aims to investigate the…

Abstract

Purpose

Climate change is one of our time’s most pressing global environmental challenges, and environmental innovation is critical to addressing it. This study aims to investigate the relationship between environmental innovation and carbon emission in the healthcare industry in Europe while also examining the moderating role of environmental governance.

Design/methodology/approach

Data for this study were collected from publicly listed healthcare companies in ten European countries spanning the years 2012–2021. The selected countries encompassed Belgium, Denmark, France, Germany, Italy, Netherlands, Spain, Sweden, Switzerland and the United Kingdom. The research encompassed all healthcare companies for which data were accessible, resulting in a comprehensive dataset comprising 1,210 companies. The authors collected data from multiple sources, including annual reports, the World Bank and Eikon databases, to ensure a robust and extensive dataset.

Findings

The results of this study indicate that environmental governance plays a significant moderating role in the relationship between environmental innovation and carbon emission within the healthcare sector in Europe, but when combined with high levels of environmental innovation, strong environmental governance leads to enhanced efforts to reduce carbon emissions. This combination also contributes to meeting the expectations of a broader range of stakeholders and maintaining legitimacy.

Practical implications

The study’s findings have practical implications for healthcare regulators, policymakers and various stakeholders. It underscores the importance of integrating solid environmental governance and innovation to address climate change challenges in the healthcare sector effectively. This integrated approach not only helps reduce carbon emissions but also contributes to achieving sustainable outcomes while satisfying a wider range of stakeholders.

Originality/value

This study adds to the existing body of knowledge by highlighting the significant role of environmental governance as a moderator in the relationship between environmental innovation and carbon emission in the healthcare industry. The research findings provide valuable insights for academics, practitioners and decision-makers, emphasizing the need to combine governance and innovation for sustainable outcomes in healthcare sectors.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 26 April 2023

Revanth Kumar Reddy Settypalli

This study aims at improving combustion process to reduce emissions. Emissions such as carbon monoxide, particulate matter and unburnt hydrocarbons are a result of incomplete…

Abstract

Purpose

This study aims at improving combustion process to reduce emissions. Emissions such as carbon monoxide, particulate matter and unburnt hydrocarbons are a result of incomplete combustion. These emissions have useful energy but cannot be reclaimed. Hence, to enhance combustion, effect of biofuel blending on diesel combustion was investigated.

Design/methodology/approach

Essential oils have been found easier for blending with diesel because of simple molecular structure compared to vegetable oils. Lavender oil is an essential oil which has not yet been studied by blending with diesel. The major constituents of lavender oil are linalyl acetate (cetane number improver) and linalool (nitrogen oxides reduction). A single-cylinder, four-stroke diesel engine was run by blending diesel with lavender oil (Lavandula angustifolia oil [LAO]) in varying proportions, 5%, 10% and 15% by volume.

Findings

Higher heat release rate (HRR) was observed using lavender oil blends compared to pure diesel. Compared to diesel, an increase in brake-specific fuel consumption using blends was observed. LAO15 has the lowest CO emissions at all loading conditions, 29.3% less at 100% load compared to diesel. LAO5 and LAO15 have 6.9% less HC emissions at 100% load condition compared to diesel. LAO15 has only 1.3% higher NOx emissions compared to diesel at 100% load condition. LAO5 has the lowest smoke content at all loading conditions.

Research limitations/implications

Lavender oil was used directly without any processing. Tested on single-cylinder engine.

Originality/value

To the best of the author’s knowledge, currently, there is no published work on lavender oil–diesel combination. Lavender oil can provide a simple renewable solution for diesel additives with potential up to 15% blending.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 1000