Search results

1 – 10 of over 2000
Article
Publication date: 13 June 2016

Frank H Bezzina and Ian Scicluna Laiviera

– The purpose of this paper is to explore the potential for a rainwater harvesting (RWH) strategy in Malta and tries to identify management practices required to implement it.

Abstract

Purpose

The purpose of this paper is to explore the potential for a rainwater harvesting (RWH) strategy in Malta and tries to identify management practices required to implement it.

Design/methodology/approach

This qualitative study adopts the concept of sustainable development in its framework whilst incorporating the specific physical and climatic realities of Malta. After sifting through the relevant literature, semi-structured interviews were conducted with key experts from four governmental/non-governmental Maltese entities that deal with policy and managerial implementation for water resources.

Findings

The study identifies the major issues surrounding water scarcity, its use and misuse and the barriers currently hindering RWH implementation in Malta. The paper argues that the key lies in rethinking innovative ways to work with the natural features and to use technology to enhance possible net beneficial effects by giving multipurpose solutions, whilst touching base on the validity and use of indigenous knowledge systems. Hence, a gauged implementation of water catchment using micro and macro approaches could bring compounded beneficial effects.

Originality/value

Malta has the highest possible baseline water stress index, yet empirical research on RWH in Malta is relatively lacking. This study addresses this gap and provides suggestions/recommendations related to the adoption of effective management practices and reforms promoting RWH that could better guide Maltese and other environmental policy makers to add resilience for coping with future water-related risks/uncertainties and to avert the impending water crisis.

Details

Management of Environmental Quality: An International Journal, vol. 27 no. 4
Type: Research Article
ISSN: 1477-7835

Keywords

Open Access
Article
Publication date: 16 February 2023

Danladi Chiroma Husaini, Kemberly Manzur and Jorge Medrano

This systematic review examined the emerging threat of indoor and outdoor pollutants to public health in Latin America and the Caribbean (LAC).

Abstract

Purpose

This systematic review examined the emerging threat of indoor and outdoor pollutants to public health in Latin America and the Caribbean (LAC).

Design/methodology/approach

Pollutants and pollution levels are becoming an increasing cause for concern within the LAC region, primarily because of the rapid increase in urbanization and the use of fossil fuels. The rise in indoor and outdoor air pollutants impacts public health, and there are limited regional studies on the impact of these pollutants and how they affect public health. A comprehensive literature search was conducted using Google Scholar, PubMed, Scopus, EBSCOhost, Web of Science and ScienceDirect databases. Significant search terms included “indoor air pollution,” “outdoor air pollution,” “pollution,” “Latin America,” “Central America,” “South America” and “Caribbean was used.” The systematic review utilized the Rayyan systematic software for uploading and sorting study references.

Findings

Database searches produced 1,674 results, of which, after using the inclusion–exclusion criteria and assessing for bias, 16 studies were included and used for the systematic review. These studies covered both indoor and outdoor pollution. Various indoor and outdoor air pollutants linked to low birth weight, asthma, cancer and DNA impairment were reported in this review. Even though only some intervention programs are available within the region to mitigate the harmful effects of pollution, these programs need to be robust and appropriately implemented, causing possible threats to public health. Significant gaps in the research were identified, especially in the Caribbean.

Research limitations/implications

Limitations of the study include limited available research done within LAC, with most of the research quantifying pollutants rather than addressing their impacts. Additionally, most studies focus on air pollution but neglect water and land pollution’s effects on public health. For this reason, the 16 studies included limited robustness of the review.

Originality/value

Although available studies quantifying pollution threats in LAC were identified in this review, research on the adverse impacts of pollution, especially concerning public health, is limited. LAC countries should explore making cities more energy-efficient, compact and green while improving the transportation sector by utilizing clean power generation. In order to properly lessen the effects of pollution on public health, more research needs to be done and implemented programs that are working need to be strengthened and expanded.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 1
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 14 September 2015

Benjamin Blair, Jenny Kehl and Rebecca Klaper

Pharmaceutical and personal care products (PPCPs) and phosphorus are pollutants that can cause a wide array of negative environmental impacts. Phosphorus is a regulated pollutant

Abstract

Purpose

Pharmaceutical and personal care products (PPCPs) and phosphorus are pollutants that can cause a wide array of negative environmental impacts. Phosphorus is a regulated pollutant in many industrial countries, while PPCPs are widely unregulated. Many technologies designed to remove phosphorus from wastewater can remove PPCPs, therefore the purpose of this paper is to explore the ability of these technologies to also reduce the emission of unregulated PPCPs.

Design/methodology/approach

Through meta-analysis, the authors use the PPCPs’ risk quotient (RQ) to measure and compare the effectiveness of different wastewater treatment technologies. The RQ data are then applied via a case study that uses phosphorus effluent regulations to determine the ability of the recommended technologies to also mitigate PPCPs.

Findings

The tertiary membrane bioreactor and nanofiltration processes recommended to remove phosphorus can reduce the median RQ from PPCPs by 71 and 81 percent, respectively. The ultrafiltration technology was estimated to reduce the median RQ from PPCPs by 28 percent with no cost in addition to the costs expected under the current phosphorus effluent regulations. RQ reduction is expected with a membrane bioreactor and the cost of upgrading to this technology was found to be $11.76 per capita/year.

Practical implications

The authors discuss the management implications, including watershed management, alternative PPCPs reduction strategies, and water quality trading.

Originality/value

The evaluation of the co-management of priority and emerging pollutants illuminates how the removal of regulated pollutants from wastewater could significantly reduce the emission of unregulated PPCPs.

Details

Management of Environmental Quality: An International Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 20 April 2023

Fatemeh Goodarzi, Kavitha Palaniappan, Manikam Pillay and Mahmoud Ershadi

Exposure to poor indoor air in refurbished buildings is a matter of health concern due to the growing concentrations of various contaminants as a result of building airtightness…

Abstract

Purpose

Exposure to poor indoor air in refurbished buildings is a matter of health concern due to the growing concentrations of various contaminants as a result of building airtightness without amendment of ventilation, or the use of building materials such as glue, paint, thinner and varnishes. Recent studies have been conducted to measure indoor air pollutants and assess the health risks affecting the quality of life, productivity and well-being of human beings. However, limited review studies have been recently conducted to provide an overview of the state of knowledge. This study aims to conduct a scoping review of indoor air quality (IAQ) in the context of refurbished or energy-retrofitted buildings.

Design/methodology/approach

A systematic screening process based on the PRISMA protocol was followed to extract relevant articles. Web of Science, Scopus, Google Scholar and PubMed were searched using customised search formulas. Among 276 potentially relevant records, 38 studies were included in the final review covering a period from 2015 to 2022.

Findings

Researchers mapped out the measured compounds in the selected studies and found that carbon dioxide (CO2) (11%) and total volatile organic compounds (11%) were among the most commonly measured contaminants. Two trends of research were found including (1) the impact of ventilative properties on IAQ and (2) the impact of introducing building materials on IAQ.

Originality/value

The contribution of this study lies in summarising evidence on IAQ measurements in refurbished buildings, discussing recent advancements, revealing significant gaps and limitations, identifying the trends of research and drawing conclusions regarding future research directions on the topic.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 8 August 2016

Andrea G Capodaglio, Arianna Callegari and Daniele Molognoni

Advancements in real-time water monitoring technologies permit rapid detection of water quality, and threats from waste loads. Water Framework Directive mandating the…

Abstract

Purpose

Advancements in real-time water monitoring technologies permit rapid detection of water quality, and threats from waste loads. Water Framework Directive mandating the establishment of Member States’ water resources monitoring, presence of hazardous contaminants in effluents, and perception of vulnerability of water distribution system to attacks, have spurred technical and economic interests. The paper aims to discuss these issues.

Design/methodology/approach

As alternative to traditional analyzers, chemosensors, operate according to physical principles, without sample collection (online), and are capable of supplying parameter values continuously and in real-time. Their low selectivity and stability issues have been overcome by technological developments. This review paper contains a comprehensive survey of existing and expected online monitoring technologies for measurement/detection of pollutants in water.

Findings

The state-of-the-art in online water monitoring is presented. Application examples are reported. Monitoring costs will become a lesser part of a water utility budget due to the fact that automation and technological simplification will abate human cost factors, and reduce the complexity of laboratory procedures.

Originality/value

An overview of applicable instrumentation, and forthcoming developments, is given. Technological development in this field is very rapid, and astonishing advances are anticipated in several areas (fingerprinting, optochemical sensors, biosensors, molecular techniques). Online monitoring is becoming an ever-important tool not only for compliance control or plant management purposes, but also as a useful approach to pollution control and reduction, minimizing the environmental impact of discharges.

Details

Management of Environmental Quality: An International Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1477-7835

Keywords

Content available
Article
Publication date: 21 January 2022

Linne Marie Lauesen

Micropollutants in the aquatic environment pose threats to both ecosystems and human health. Traditional wastewater treatment plants (WWTP) reduce some micropollutants, especially…

Abstract

Purpose

Micropollutants in the aquatic environment pose threats to both ecosystems and human health. Traditional wastewater treatment plants (WWTP) reduce some micropollutants, especially those who adhere to sludge or suspended matter. The hydrophilic micropollutants, on the other side, which may be non-biodegradable and resistant to UV-treatment etc. are typically transported untreated into the water recipients. This paper contains a literature study on the state of the art of advanced wastewater treatment technologies for reducing micropollutants such as pharmaceutical degradation products, personal care products, surfactants and industrial chemicals including heavy metals.

Design/methodology/approach

This literature study is completed using the most extensive and expansive literature database in the World to date, Google Scholar (GS). Published papers in recognized scientific journals are sought out in GS, and for relevance for this literature study, papers published here from 2016 and onwards (the last 5 years) have been chosen to eliminate irrelevant studies.

Findings

The result of the study is that there are many promising technologies on the market or emerging; however, no one solution treats every micropollutant equally well. Since advanced technologies often require expensive investments for municipalities and companies, it is important to identify which micropollutants pose the highest risk towards human health and the environment, because choosing systems to eliminate them all is not economically wise, and even choosing a system combining the existing technologies can be more expensive than states, municipalities and private companies are capable of investing in.

Research limitations/implications

The research is limited to published papers on GS, which may omit certain papers published in closed databases not sharing their work on GS.

Practical implications

The practical implications are that practitioners cannot find go-to solutions based on the conclusions of the research and thus need to use the results to investigate their own needs further in order to make the wisest decision accordingly. However, the paper outlines the state of the art in advanced wastewater treatment and explains the benefits and downsides of the technologies mentioned; however, more research in the field is required before practitioners may find a proper solution to their specific issues.

Social implications

The social implications are that the consequences of introducing a removal of micropollutants from the water environment can ultimately effect the citizens/consumers/end-users through added costs to the tariffs or taxes on advanced wastewater treatment, added costs on everyday goods, wares and products and added costs on services that uses goods, wares and products that ultimately produces micropollutants affecting the water environment.

Originality/value

This paper presents a much needed state of the art regarding the current advanced technologies to mitigate micropollutants in wastewater. The overview the paper provides supports politics on national as well as international levels, where larger unions such as the EU has stated that advanced wastewater treatment will be the next step in regulating pollutants for aquatic outlet.

Details

Technological Sustainability, vol. 1 no. 2
Type: Research Article
ISSN: 2754-1312

Keywords

Article
Publication date: 10 December 2019

Akbar Eslami, Zahra Goodarzvand Chegini, Maryam Khashij, Mohammad Mehralian and Marjan Hashemi

A nanosilica adsorbent was prepared and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET.

Abstract

Purpose

A nanosilica adsorbent was prepared and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET.

Design/methodology/approach

The optimum conditions for the highest adsorption performance were determined by kinetic modeling. The adsorbent was used for the adsorption of acetaminophen (ACT), and the parameters affecting the adsorption were discussed like pH, initial concentration, contact time and adsorbent dosage. The adsorbent have been characterized by SEM, XRD and BET analysis. The kinetic models including pseudo-first-order and pseudo-second-order with Langmuir and Freundlich isotherm models were applied to investigate the kinetic and isotherms parameters.

Findings

The adsorption of ACT increased to around 95% with the increase of nanosilica concentration to 30 g/L. Moreover, the adsorption process of ACT follows the pseudo-second-order kinetics and the Langmuir isotherm with the maximum adsorption capacity of 609 mg/g.

Practical implications

This study provided a simple and effective way to prepare of nanoadsorbents. This way was conductive to protect environmental and subsequent application for removal of emerging pollutants from aqueous solutions.

Originality/value

The novelty of the study is synthesizing the morphological and structural properties of nanosilica-based adsorbent (specific surface area, pore volume and size, shape and capability) and improving its removal rate through optimizing the synthesis method; and studying the capability of synthesis of nanosilica-based adsorbent for removal of ACT as a main emerging pharmaceutical water contaminant.

Details

Pigment & Resin Technology, vol. 49 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 4 May 2021

Nadeem Ahmad, Sirajuddin Ahmed, Viola Vambol and Sergij Vambol

All those effluent streams having compromised characteristics pose negative effects on the environment either directly or indirectly. Health care facilities and hospitals also…

1543

Abstract

Purpose

All those effluent streams having compromised characteristics pose negative effects on the environment either directly or indirectly. Health care facilities and hospitals also generate a large amount of effluent like other industries containing harmful and toxic pharmaceutical residual compounds due to uncontrolled use of drugs, besides others. The occurrence of antibiotic in the environment is of utmost concern due to development of resistant genes. These get mixed up with ground and surface water due to lack of proper treatment of hospital wastewater. The effect of pharmaceutical compounds on human society and ecosystem as a whole is quite obvious. There are no strict laws regarding discharge of hospital effluent in many countries. Contrary to this, the authors do not have appropriate treatment facilities and solution to solve day by day increasing complexity of this problem. Moreover, water discharged from different health facilities having variable concentration often gets mixed with municipal sewage, thus remains partially untreated even after passing from conventional treatment plants. The purpose of this paper is to highlight the occurrences and fate of such harmful compounds, need of proper effluent management system as well as conventionally adopted treatment technologies nowadays all around the globe. This mini-review would introduce the subject, the need of the study, the motivation for the study, aim, objectives of the research and methodology to be adopted for such a study.

Design/methodology/approach

Hospital effluents consisting of pathogens, fecal coliforms, Escherichia coli, etc, including phenols, detergents, toxic elements like cyanide and heavy metals such as copper (Cu), iron (Fe), gadolinium (Gd), nickel (Ni), platinum (Pt), among others are commonly detected nowadays. These unwanted compounds along with emerging pollutants are generally not being regulated before getting discharged caused and spread of diseases. Various chemical and biological characteristics of hospital effluents are assessed keeping in the view the threat posed to ecosystem. Several research studies have been done and few are ongoing to explore the different characteristics and compositions of these effluent streams in comparison so as to suggest the suitable conventional treatment techniques and ways to manage the problem. Several antibiotic groups such as ciprofloxacin, ofloxacin, sulfa pyridine, trimethoprim, metronidazole and their metabolites are reported in higher concentration in hospital effluent. The aquatic system also receives a high concentration of pharmaceutical residues more than 14,000 μg/L from treatment plants also and other surface water or even drinking water in Indian cities. Many rivers in southern parts of India receives treated water have detected high concentration drugs and its metabolites. As far as global constraints that need to be discussed, there are only selected pharmaceuticals compounds generally analyzed, issue regarding management and detection based on method of sampling, frequency of analysis and observation, spatial as well as temporal concentration of these concerned micropollutants, accuracy in detecting these compounds, reliability of results and predictions, prioritization and the method of treatment in use for such type of wastewater stream. The complexity of management and treatment as well need to be addressed with following issues at priority: composition and characterization of effluent, compatible and efficient treatment technology that needs to be adopted and the environment risk posed by them. The problem of drugs and its residues was not seen to be reported in latter part of 20th century, but it might be reported locally in some part of globe. This paper covers some aspect about the disposal and regulatory standard around the world toward hospital effluent discharge, its managements and treatment technologies that are adopted and best suitable nowadays various industries and monitoring the efficiencies of existing treatment systems. This mini-review would introduce the subject, the need, the motivation and objectives of the study and methodology can be adopted for such a study.

Findings

The compiled review gives a complete view about the types of antibiotics used in different health care facilities, their residue formation, occurrences in different ecosystems, types of regulations or laws available in different counties related to disposal, different type of treatment technologies, innovative combined treatment schemes and future action needed to tackle such type of effluent after its generation. The thesis also highlights the use of certain innovative materials use for the treatment like nanoparticles. It also discusses about the residues impact on the human health as well as their bioaccumulative nature. If the authors relate the past to the current scenario of pharmaceutical compounds (PhACs) in the environment, the authors will certainly notice that many diseases are nowadays not curable by simple previously prescribed Ab. Many research projects have been done in European countries that have shown the risk of such residues like Pills, Sibell, Poseidon, No pills, Neptune, Knappe, Endetech, etc. In the previous section, it was mentioned that there are no stringent laws for hospital wastewater and in many countries, they are mixed with domestic wastewater. Many difficulties are there with this research due to complex analysis, detection of targeted Ab, affecting waterbodies rate of flow, nature of treatment varies with season to season. The way nature is being degraded and harmful effect are being imposed, it is important to take immediate and decisive steps in this area. Wastewater treatment plants (WWTPs) serves as a nursery for antibiotic-resistant systems, hence monitoring with great attention is also needed. Many trials with different treatment process, in combination, were considered. Many countries are paying great attention to this topic by considering the severity of the risk involved in it.

Research limitations/implications

Previous studies by several scientists show that the pharmaceutical residues in the discharged effluent displayed direct toxic effects, and sometimes, detrimental effects in the mixture were also observed. The discharge of untreated effluent from hospitals and pharmaceuticals and personal care products in the natural ecosystem poses a significant threat to human beings. The pharmaceuticals, like antibiotics, in the aquatic environment, accelerate the development of the antibiotic-resistant genes in bacteria, which causes fatal health risks to animals and human beings. Others, like analgesics, are known to affect development in fishes. They also degrade the water quality and may lead to DNA damage, toxicity in lower organisms like daphnia and have the potential to bioaccumulate. A few commonly used nanoadsorbents for water and wastewater treatment along with their specific properties can also be used. The main advantages of them are high adsorption capacity and superior efficiency, their high reusability, synthesis at room temperatures, super magnetism, quantum confinement effect as well as eco-toxicity. This review will focus on the applicability of different nanoscale materials and their uses in treating wastewater polluted by organic and inorganic compounds, heavy metals, bacteria and viruses. Moreover, the use of various nanoadsorbents and nano-based filtration membranes is also examined.

Practical implications

A number of different pharmaceutical residues derived from various activities like production facilities, domestic use and hospitals have been reported earlier to be present in groundwater, effluents and rivers, they include antibiotics, psycho-actives, analgesics, illicit drugs, antihistamine, etc. In past few years environmental scientists are more concerned toward the effluents generated from medical care facilities, community health centers and hospitals. Various chemical and biological characteristics of hospital effluents have been assessed keeping in the view the common threats pose by them to the entire ecosystem. In this study, seven multispecialty hospitals with nonidentical pretreatment were selected for three aspects i.e. conventional wastewater characteristics, high priority pharmaceuticals and microbial analyses. The present work is to evaluate efficacy of advanced wastewater treatment methods with regard to removal of these three aspects from hospital effluents before discharge into a sewage treatment plant (STP). Based on test results, two out of seven treatment technologies, i.e. MBR and CW effectively reducing conventional parameters and pharmaceuticals from secondary and tertiary treatments except regeneration of microbes were observed in tertiary level by these two treatments.

Social implications

This review has aimed to identify the emerging contaminants, including pharmaceutical residues, highly consumed chemicals that are present in the hospital effluent, along with their physicochemical and biological characteristics. In this, the main objective was to review the occurrences and fate of common drugs and antibiotics present in effluents from hospital wastewaters. As far as global constraints that need to be discussed, there are only selected pharmaceuticals compounds generally analyzed, issue regarding management and detection based on method of sampling, frequency of analysis and observation, spatial as well as temporal concentration of these concerned micropollutants, accuracy in detecting these compounds, reliability of results and predictions, prioritization and the method of treatment in use for such type of wastewater stream are among the major issues (Akter et al., 2012; Ashfaq et al., 2016; García-Mateos et al., 2015; Liu et al., 2014; Mubedi et al., 2013; Prabhasankar et al., 2016; Sun et al., 2016; Suriyanon et al., 2015; Wang et al., 2016; Wen et al., 2004). This paper covers some aspect about the disposal and regulatory standard around the world toward hospital effluent discharge, its managements and treatment technologies that are adopted and best suitable nowadays.

Originality/value

This study many multispecialty hospitals with nonidentical pretreatment were selected for three aspects i.e. conventional wastewater characteristics high priority pharmaceuticals and microbial analyses. The present work is to evaluate efficacy of advanced wastewater treatment methods with regard to removal of these three aspects from hospital effluents before discharge into an STP. Based on test results, two out of different treatment effectively reducing conventional parameters and pharmaceuticals from secondary and tertiary treatments except regeneration of microbes were observed in the tertiary level by these two treatments were studies followed by ozonation and ultraviolet-ray treatment.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 22 October 2019

Nadeem Ahmad Khan, Saif Ullah Khan, Sirajuddin Ahmed, Izharul Haq Farooqi, Arshad Hussain, Sergij Vambol and Viola Vambol

The purpose of this paper is to cover some aspects about the disposal and regulatory standard around the world toward hospital effluent discharge, its managements and treatment…

Abstract

Purpose

The purpose of this paper is to cover some aspects about the disposal and regulatory standard around the world toward hospital effluent discharge, its managements and treatment technologies that are adopted and best suitable nowadays.

Design/methodology/approach

Due to large and variety of antibiotics available in the market nowadays it is difficult to control its use, thereby risking the whole ecosystem and its components. The regulation pattern is variable depending upon the various factors in different countries. The permissible limit of these emerging pollutants found in sewage as compared to in hospital effluent streams having active pharmaceutical ingredients is very narrow and is a debatable issue.

Findings

The disparity in the available legislation for hospital waste management in different countries makes it difficult to compare pro’s and con’s of methods adopted. Strict laws need to be framed for hospital wastewater management and its treatment, as it contains harmful compounds in higher concentrations resulting in development of resistant genes. The guideline applicable nowadays makes it clear that, specific management guidelines with respect to HWW, but also indicate certain characteristics that can be represented to specify their nature and indicator.

Research limitations/implications

Determination of effluent characteristic for each specialized treatment need to be analyzed for meeting the framed regulatory standards. Up-gradation of existing treatment facilities, adopting new technologies and improving operation, maintained is a viable option. As there are no specific treatment schemes available hence combination and optimization of treatment methods may solve the problem to certain extent.

Practical implications

There is some flexibility also there so that law framework can be modified accordingly. For any health facilities direct discharges into natural water bodies it effluent need to follow national discharge standards. These are quite strict as compared to indirect standards and generally not meet by such facilities. This is quite logical because they are not being monitored or treated by municipal systems.

Social implications

The law indicates that hospital needed to collect and treat effluent according to the treatment standards. But on other hand the law was made making it consideration about the HWW collection in water bodies.

Originality/value

The best way of management as described, is to treat HWW onsite-dividing into primary, secondary and tertiary. The document also provides details about sludge disposal, possible reuse, including the application of new and innovative treatment technologies for HWW. It also provides guidance for minimum approach for HWW management because developing countries patients do not have proper sanitation facilities.

Details

Smart and Sustainable Built Environment, vol. 9 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 9 January 2017

Thiara Reis Lopes, Fernando Periotto and Adelmo Lowe Pletsch

The purpose of this paper is to assess the occurrence and risk of dispersion in the environment of antibiotic-resistant microorganisms from sanitary sewage sludge produced in two…

Abstract

Purpose

The purpose of this paper is to assess the occurrence and risk of dispersion in the environment of antibiotic-resistant microorganisms from sanitary sewage sludge produced in two conventional wastewater treatment systems adopted in the West of the State of Paraná, Brazil.

Design/methodology/approach

The sludge samples were collected for three months from two wastewater treatment plants, totaling six sample points, and sent to the laboratory where the physical-chemical and biological determinations were performed.

Findings

This work made possible to find that the sludge produced in the sewage treatment plants presents potential risks related to the spread of microorganisms due to the occurrence of resistant isolates of Escherichia coli and Salmonella sp. It was also possible to detect that the largest concentrations of metal ions in the sludge favored the occurrence of bacterial resistance to antibiotics. The occurrence of pathogens, heavy metals and other emerging pollutants in sewage indicates that the sludge requires proper treatment, to provide safe agricultural reuse or disposal.

Practical implications

The techniques applied for monitoring sludge were effective to check the risk of resistant microorganisms input into the environment. Studies concerning sewage treatment plants’ final effluents can bring additional data about the incorporation of such microorganisms into aquatic environments.

Originality/value

The results made possible to observe the need to provide post-treatment for the sludge, especially of the sludge obtained from the anaerobic fluidized bed reactor, since the removal of pathogens, as well as the nutrients, is not satisfactory.

Details

Management of Environmental Quality: An International Journal, vol. 28 no. 1
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 10 of over 2000