Search results

1 – 10 of 444
Article
Publication date: 10 April 2017

Brit Anak Kayan

Sustainability encapsulates economic, environmental and societal domains. In order to conform to these domains, the efficiency of maintenance and repair of heritage buildings is…

1081

Abstract

Purpose

Sustainability encapsulates economic, environmental and societal domains. In order to conform to these domains, the efficiency of maintenance and repair of heritage buildings is no exception. Emergently, environmental considerations for sustainable heritage buildings repair have become increasingly important. The purpose of this paper is to present a decision-making process based on “Green Maintenance Model” – an appraisal approach based on life cycle assessment (LCA) of paint repair options for heritage buildings.

Design/methodology/approach

Calculation procedures of Green Maintenance model within selected boundaries of LCA enable evaluation of carbon emissions, in terms of embodied carbon expenditure, expended from paint repair for heritage buildings during maintenance phase.

Findings

“Green Maintenance” model could be understood as a carbon LCA of paint repair and has been recognized in reducing carbon emissions. Significantly, the model underpins decision-making for repair options for heritage buildings.

Practical implications

It must be emphasized that the calculation procedures of Green Maintenance model is not limited to heritage buildings and can be applied to any repair types, materials used and building forms. More importantly, this model practically supports environmentally focused conservation and promotes sustainable repair approach.

Social implications

The implementation of Green Maintenance model highlights the efficiency of repairs options that may be adopted.

Originality/value

Green Maintenance shows that generated environmental maintenance impact from repair options relays the “trueembodied carbon expenditure contextualized within the longevity of repair and its embodied carbon. This will consequently allow rationale in appraisal of repair options.

Details

International Journal of Building Pathology and Adaptation, vol. 35 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 4 July 2016

Brit Anak Kayan, Alan M. Forster and Phillip F.G. Banfill

Sustainability is well understood to encapsulate economic, environmental and societal parameters. The efficiency of maintenance interventions for historic buildings is no…

Abstract

Purpose

Sustainability is well understood to encapsulate economic, environmental and societal parameters. The efficiency of maintenance interventions for historic buildings is no exception and also conforms to these broad factors. Recently, environmental considerations for masonry repair have become increasingly important and this work supports this growing area. The purpose of this paper is to give insight on how an option appraisal approach of “Green Maintenance” modelling for historic masonry buildings repair practically determine and ultimately substantiate the decision-making process using a calculation procedures of life cycle assessment, within delineated boundaries.

Design/methodology/approach

Calculation procedures of the model enables an assessment of embodied carbon that is expended from different stone masonry wall repair techniques and scenarios for historic masonry buildings during the maintenance phase.

Findings

It recognises the importance roles Green Maintenance model can play in reducing carbon emissions and underpins rational decision making for repair selection.

Practical implications

It must be emphasised that the calculation procedures presented here, is not confined to historic masonry buildings and can be applied to any repair types and building form. The decisions made as a result of the utilisation of this model practically support environmentally focused conservation decisions.

Social implications

The implementation of the model highlights the efficacy of repairs that may be adopted.

Originality/value

The paper is a rigorous application and testing of the Green Maintenance model. The model relays the “truecarbon cost of repairs contextualised within the longevity of the materials and its embodied carbon that consequently allows rational appraisal of repair and maintenance options.

Details

Smart and Sustainable Built Environment, vol. 5 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 15 February 2021

Brit Anak Kayan, Deanne Seanuau Kely Jitilon and Mohammad Nazmi Mohd Azaman

Low carbon repair epitomises sustainable maintenance management for heritage buildings. However, there is little recognition of this aspect, coupled with impractical assessment of…

Abstract

Purpose

Low carbon repair epitomises sustainable maintenance management for heritage buildings. However, there is little recognition of this aspect, coupled with impractical assessment of repair impact strategies. This paper aims to present a decision-making process based on life cycle assessment (LCA) approach of lime plaster repair options for heritage buildings.

Design/methodology/approach

Calculation procedures of LCA were carried out to enable sustainable maintenance management appraisal for heritage buildings upon embodied carbon expenditure expended from lime plaster repair during the maintenance phase.

Findings

Calculation procedures could be understood as a carbon LCA of lime plaster repair and recognised in reducing CO2 emissions. This underpins low carbon of lime plaster repair in achieving sustainable maintenance management of heritage buildings.

Practical implications

It must be emphasised that the LCA approach is not limited to heritage buildings and can be applied to any repair types, materials used and building forms. This supports environmentally focused economies and promotes sustainable maintenance management solutions.

Social implications

The LCA approach highlights the efficiency of repair impact strategies through evaluation of low carbon repairs options.

Originality/value

The LCA approach results show that low carbon repair, contextualised within maintenance management, relays the “trueembodied carbon expenditure and stimulates sustainable development of heritage buildings.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 11 no. 4
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 18 November 2021

Brit Anak Kayan and Nur Nadhifah Ashraf

Heritage buildings are consistently impacted by technical and pathological issues associated with their maintenance and conservation such as diminish of building's authenticity…

Abstract

Purpose

Heritage buildings are consistently impacted by technical and pathological issues associated with their maintenance and conservation such as diminish of building's authenticity and damaging environmental impact. This paper aims to evaluate the environmental maintenance impact (EMI) of the Singgora roof tiles repair in heritage buildings. The EMI is an evaluation upon embodied carbon expenditure during maintenance phase, thus important in repair efficiency appraisal.

Design/methodology/approach

Calculation procedures within selected boundaries of life cycle assessment (LCA) and arbitrary period enabled evaluation of the EMI of Singgora roof tiles repair in heritage buildings during the maintenance phase.

Findings

Evaluation of the EMI could be appreciated as a carbon LCA of Singgora roof tiles repair and has been recognised in embodied carbon expenditure reduction in the form of CO2 emissions mitigation. Importantly, the evaluation underpins decision-making for heritage buildings repair.

Practical implications

EMI evaluation encompasses all building types and forms, thus comprehends the associated applied methodologies. Moreover, the evaluation reflects the emerging environmental challenges of sustaining resilient buildings globally.

Social implications

EMI evaluation highlights options that may be adopted in repair. Indirectly, this implicates heritage building preservation and place's identity protection. Significantly, the evaluation supports environmentally focused conservation and promotes a sustainable repair approach.

Originality/value

EMI evaluation of this paper may devoted to the holistic understanding of the complex relations between Singgora roof materials and their environmental performance. Meanwhile, the application of a carbon LCA had dictated integration of multidisciplinary of heritage buildings maintenance and conservation.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 11 April 2023

Laina Hilma Sari, Brit Anak Kayan, Zahriah Zahriah, Zulfikar Taqiuddin, Cut Nursaniah and Siti Norbaya Mohd Konar

This paper is an appraisal using the life cycle assessment (LCA) of paint repair for heritage buildings based on the green maintenance model.

Abstract

Purpose

This paper is an appraisal using the life cycle assessment (LCA) of paint repair for heritage buildings based on the green maintenance model.

Design/methodology/approach

Calculation procedures of green maintenance model within cradle-to-site boundaries of LCA approach were undertaken. The calculations evaluate embodied carbon expended from paint repair of Gunongan, Banda Aceh and Melaka Stamp Museum, Melaka.

Findings

The findings show that the type and number of coats applied will determine the lifespan of the paint. The lifespan of paint influences the frequency of its repair, thus affecting environmental maintenance impact (EMI).

Practical implications

Green maintenance model is not confined to heritage buildings and can be applied to any repair types, materials used and building forms. The model supports and stimulates research dedicated to the sustainable development of cultural heritage. This results in the attainment of environmentally focused conservation, promoting sustainable repair approach and inculcating sustainable development of the historic environment.

Social implications

Green maintenance model highlights the efficiency of repair options that may be adopted for heritage buildings, thus cultivating skills and knowledge in cultural heritage and sustainable development.

Originality/value

The paint repair appraisal of heritage buildings in different countries and localities, which share similar tropical climate, can be undertaken. It demonstrates how different approaches by relevant agencies to the paint repair of heritage buildings impact on embodied carbon expenditure.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 18 May 2015

Brit Anak Kayan

It is well recognised that Conservation Plan has attracted attention to the maintenance of historic buildings; despite diverse array of issues, particularly associated with “Green…

Abstract

Purpose

It is well recognised that Conservation Plan has attracted attention to the maintenance of historic buildings; despite diverse array of issues, particularly associated with “Green Maintenance” concept and methodology and sustainable repair approach. The theory of these three concepts currently exists, but fails to be realised in practical integration. The purpose of this paper to ask why this failure is occurring and how it influences sustainable historic environment.

Design/methodology/approach

The paper is composed of a critical review of existing literature and an argument built based on the concept of a Conservation Plan, “Green Maintenance” concept and methodology and sustainable repair approach for historic buildings.

Findings

Despite the need of maintenance of historic buildings, this review suggests that a Conservation Plan often mitigates against its own association with “Green Maintenance”. Conversely, this could be improved by transforming the integration to be more pronounced in achieving sustainable repair for historic buildings.

Practical implications

An integration of the concept of a Conservation Plan, “Green Maintenance” and sustainable repair approach could be utilised to form the basis of decision-making process for achieving sustainable historic environment.

Social implications

An integration of Conservation Plan, “Green Maintenance” and sustainable repair approach will be positively welcomed as our society moves towards a low carbon economy and materials as well as “green” procurement.

Originality/value

Unless integration between of a Conservation Plan, “Green Maintenance” and sustainable repair is improved, much of our culturally significant historic buildings will not be repaired in sustainable ways and our future generation may lose their historic environment.

Details

Smart and Sustainable Built Environment, vol. 4 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 18 September 2019

Visar Hoxha

The purpose of this paper is to quantify the carbon emissions emitted by two different typical apartment units representative of two different construction periods in Kosovo due…

Abstract

Purpose

The purpose of this paper is to quantify the carbon emissions emitted by two different typical apartment units representative of two different construction periods in Kosovo due to main construction materials as a consequence of embodied energy.

Design/methodology/approach

The present study uses a three-step (bottom-up) process-based life cycle analysis of the construction material set for two different apartment units. The current study uses material analysis. Embodied CO2 is estimated by multiplying material masses with the corresponding ECO2 coefficients (kg CO2/kg). Due to the lack of a comprehensive Kosovo database, data from an international database are utilized. The results provide practical baseline indicators for the contribution of each material in terms of mass and embodied CO2.

Findings

Results of quantitative research find that apartment unit representative of the old communist-era construction produces 50 percent more embodied CO2 emissions than an apartment unit that is representative of modern construction in Kosovo. The study finds that this difference comes mainly because of the utilization of larger quantities of steel, concrete, and precast fabricated concrete in the apartment unit that is representative of the old communist era.

Research limitations/implications

The calculation of embodied CO2 emissions for major construction materials in typical apartments in Kosovo can help in the development of national databases in the future. The availability of such databases could help the construction industry in Kosovo to open up to new sustainable design approaches since such databases and evaluations performed in the national context in Kosovo could help the builders in selecting, assessing and using environmentally friendly materials during the design or refurbishment stage of a building.

Originality/value

This paper is the first investigation of the embodied carbon emission in two different typical apartment building structures in Kosovo.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 20 March 2024

Jinwei Lv, Bing Liu and Li Chai

Urbanization is driving the growth of China’s carbon footprint. It’s important to investigate what factors, how and to what extent, affect carbon footprints embedded in various…

Abstract

Purpose

Urbanization is driving the growth of China’s carbon footprint. It’s important to investigate what factors, how and to what extent, affect carbon footprints embedded in various categories of rural and urban households’ consumption.

Design/methodology/approach

We employ an environmental extended input-output model to assess and compare the rural-urban household carbon footprints and perform a multivariant regression analysis to identify the varying relationships of the determinants on rural and urban household carbon footprints based on the panel data of Chinese households from 2012 to 2018.

Findings

The results show evidence of urbanity density effect on direct carbon footprints and countervailing effect on indirect carbon footprints. The old dependency ratio has no significant effect on rural family emissions but has a significantly negative effect on urban direct and indirect carbon footprints. A higher child dependency ratio is associated with less rural household carbon emissions while the opposite is true for urban households. Taking advantage of recycled fuel saves direct carbon emissions and this green lifestyle benefits urban households more by saving more carbon emissions. There is a positive relationship between consumption structure ratio and direct carbon footprints while a negative relationship with indirect carbon footprints and this impact is less significant for urban households. The higher the price level of water, electricity and fuel, the lower the rural household’s direct carbon footprints. Private car ownership consistently augments household carbon footprints across rural and urban areas.

Originality/value

This paper provides comprehensive findings to understand the relationships between an array of determinants and China’s rural-urban carbon emissions, empowering China’s contribution to the global effort on climate mitigation.

Details

China Agricultural Economic Review, vol. 16 no. 1
Type: Research Article
ISSN: 1756-137X

Keywords

Article
Publication date: 31 December 2018

Mónica Santillán Vera and Angel de la Vega Navarro

The purpose of this paper is to quantitatively examine if varying household consumption activities at different income levels drove CO2 emissions to different degrees in Mexico…

Abstract

Purpose

The purpose of this paper is to quantitatively examine if varying household consumption activities at different income levels drove CO2 emissions to different degrees in Mexico from 1990 to 2014.

Design/methodology/approach

The paper applied a simple expenditure-CO2 emissions elasticity model – a top-down approach – using data from consumption-based CO2 emission inventories and the “Household Income and Expenditure Survey” and assuming a range of 0.7-1.0 elasticity values.

Findings

The paper results show a large carbon inequality among income groups in Mexico throughout the period. The household consumption patterns at the highest income levels are related to significantly more total CO2 emissions (direct + indirect) than the household consumption patterns at the lowest income levels, in absolute terms, per household and per capita. In 2014, for example, the poorest household decile emitted 1.6 tCO2 per capita on average, while the wealthiest decile reached 8.6 tCO2 per capita.

Practical/implications

The results suggest that it is necessary to rethink the effect of consumption patterns on climate change and the allocation of mitigation responsibilities, thus opening up complementary options for designing mitigation strategies and policies.

Originality/value

The paper represents an alternative approach for studying CO2 emissions responsibility in Mexico from the demand side, which has been practically absent in previous studies. The paper thereby opens a way for studying and discussing climate change in terms of consumption and equity in the country.

Details

International Journal of Energy Sector Management, vol. 13 no. 3
Type: Research Article
ISSN: 1750-6220

Keywords

Open Access
Article
Publication date: 22 April 2020

David Ness

While most efforts to combat climate change are focussed on energy efficiency and substitution of fossil fuels, growth in the built environment remains largely unquestioned. Given…

Abstract

While most efforts to combat climate change are focussed on energy efficiency and substitution of fossil fuels, growth in the built environment remains largely unquestioned. Given the current climate emergency and increasing scarcity of global resources, it is imperative that we address this “blind spot” by finding ways to support required services with less resource consumption.

There is now long overdue recognition to greenhouse gas emissions “embodied” in the production of building materials and construction, and its importance in reaching targets of net zero carbon by 2050. However, there is a widespread belief that we can continue to “build big”, provided we incorporate energy saving measures and select “low carbon materials” – ignoring the fact that excessive volume and area of buildings may outweigh any carbon savings. This is especially the case with commercial real estate.

As the inception and planning phases of projects offer most potential for reduction in both operational and embodied carbon, we must turn our attention to previously overlooked options such as “build nothing” or “build less”. This involves challenging the root cause of the need, exploring alternative approaches to meet desired outcomes, and maximising the use of existing assets. If new build is required, this should be designed for adaptability, with increased stewardship, so the building stock of the future will be a more valuable and useable resource.

This points to the need for increased understanding and application of the principles of strategic asset management, hitherto largely ignored in sustainability circles, which emphasize a close alignment of assets with the services they support.

Arguably, as the built environment consumes more material resources and energy than any other sector, its future configuration may be critical to the future of people and the planet. In this regard, this paper seeks to break new ground for deeper exploration.

1 – 10 of 444