Search results

1 – 10 of over 43000
Article
Publication date: 3 May 2016

Hyunho Kim

The purpose of this study is to form fabrication and electrical characteristics of passive device embedded substrate that is embedded chip bead inductor and chip capacitor inside…

Abstract

Purpose

The purpose of this study is to form fabrication and electrical characteristics of passive device embedded substrate that is embedded chip bead inductor and chip capacitor inside substrate for the application of radio frequency (RF) modules.

Design/methodology/approach

Passive device embedded substrate was fabricated using embedding process that consists of lamination process, laser drilling at the electrode Cu pads of passive components, electro-less Cu plating formation process such as photolithography, electrolytic Cu plating and etching. Impedance and capacitance characteristics of the fabricated passive device embedded substrate were evaluated.

Findings

By checking what embedded components are placed in the appropriate place using failure analysis via connection performance between copper plane and embedded components was verified. For measuring electrical characteristics of the fabricated passive device embedded substrate, the evaluation was done using test methods like continuity test for checking interconnections which are not connected to any embedded components and in-circuit test for checking interconnections which are connected to any embedded component. From in-circuit testing for embedding passive components with series and parallel circuits, the authors verified how to test passive device embedded substrate by using capacitance and impedance measurement with the comparison of measured results between good samples and bad samples.

Originality/value

Ultra miniaturized and low-profile mobile products are driving the need for embedded passive component integration technologies using a novel manufacturing-compatible organic substrate and interconnect technologies. Fabrication and test methods for passive device embedded substrate described in this paper are expected to lead to be developed to make quality measurable for the application of RF modules.

Details

Circuit World, vol. 42 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 February 2017

Wojciech Steplewski, Andrzej Dziedzic, Janusz Borecki and Tomasz Serzysko

The purpose of this paper is to investigate the basic functional parameters of passive embedded components in printed circuit boards (PCBs) under environmental exposures such as…

224

Abstract

Purpose

The purpose of this paper is to investigate the basic functional parameters of passive embedded components in printed circuit boards (PCBs) under environmental exposures such as thermal-humidity and thermal exposure.

Design/methodology/approach

The investigations were based on the thin-film resistors made of NiP alloy, thick-film resistors made of carbon or carbon–silver inks, embedded capacitors made of FaradFlex materials and embedded inductor made in various configurations. The capacitors and thin- and thick-film resistors were tested in the climatic chamber in conditions of thermal-humidity exposure at 85°C and 85 per cent RH for 500 h. The embedded inductors were tested in two different environmental conditions: thermal-humidity exposure at 60°C and 95 per cent RH, and thermal exposure at 150°C and additionally at the temperature in the range of +25°C to +150°C.

Findings

Studies show that in the case of embedded capacitors, the changes caused by exposure to thermal-humidity are durable and lead to the capacity increase. The embedded thin-film resistors behave in the same manner, whereas the thick-film resistors were the least resistant to the conditions of exposure. Most of the polymer thick-film resistors have been damaged. The changes of coils' properties during aging are small, and what is most important is that, after some time of exposure, their parameters stabilize at a particular level. The changes resulting from the increase in temperature are typically related to the change of material resistance (Cu) of which coils are made, and as such, they cannot be avoided but they can be predicted.

Research limitations/implications

The realized studies allowed determination of the properties of the embedded passive elements with respect to specific environmental exposures. The studies show that embedded resistors can be used interchangeably with chip passive elements. It allows saving the area on the surface of PCB, occupied by these passive elements, for assembly of active elements integrated circuits (ICs) and thus enabling the miniaturization of electronic devices.

Originality/value

The knowledge about the behavior of the operating parameters of embedded components, considering the environmental conditions, allows for development of more complex systems with integrated PCBs.

Article
Publication date: 1 March 2004

Peter A. Sandborn, Bevin Etienne, Jeffrey W. Herrmann and Mandar M. Chincholkar

With the advent of new materials and technologies that enable passive components to be embedded within electronic substrates, one key question that arises is: under what…

Abstract

With the advent of new materials and technologies that enable passive components to be embedded within electronic substrates, one key question that arises is: under what circumstances (and for what type of applications) is it economically viable to consider using embedded passives? The economic issues that must be considered consist of a combination of manufacturing costs and throughputs, and non‐manufacturing life cycle costs. This paper discusses the assessment of manufacturing costs associated with embedding resistors and capacitors in printed circuit boards and provides cost modeling results for an avionics board. The discussion is extended to include optimizing the specific embedded passive content in a board and design for production modeling when embedded passives are present. Life cycle cost issues are also qualitatively discussed.

Details

Circuit World, vol. 30 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 18 May 2010

Axel Bindel, Paul Conway, Laura Justham and Andrew West

The purpose of this paper is to present an update of and the latest results from work on a project aimed at monitoring electronic products during the whole life cycle with embedded

Abstract

Purpose

The purpose of this paper is to present an update of and the latest results from work on a project aimed at monitoring electronic products during the whole life cycle with embedded wireless components.

Design/methodology/approach

Business processes of the electronic manufacturing supply chain were analysed. A business case and the system opportunities for life cycle monitoring, based on embedded wireless components system were developed. Radio frequency identification (RFID) assembly technology was adapted for the integration of components into a multi‐layer printed circuit board (PCB).

Findings

By storing product‐related information into electronic products, tracing of components, monitoring of processes, operations and costs, environmentally optimised recycling can be enhanced.

Research limitations/implications

The research undertaken so far relates to the embedding of RFID tags into PCBs. Wireless components with more processing power will be used in the next project phase.

Originality/value

The paper details how wireless components can be embedded into multi‐layer PCBs and how a business case for a life cycle monitoring system can be established.

Article
Publication date: 11 February 2014

Joanna Poon

The purpose of this paper is to evaluate how and to what extent commercial awareness is embedded within the curriculum of the UK Royal Institution of Chartered Surveyors…

2011

Abstract

Purpose

The purpose of this paper is to evaluate how and to what extent commercial awareness is embedded within the curriculum of the UK Royal Institution of Chartered Surveyors (RICS)-accredited real estate courses. It also discusses the development of commercial awareness taxonomy.

Design/methodology/approach

This paper presents the research findings of questionnaire survey and interviews with RICS-accredited real estate course providers in the UK. The questionnaire aimed to gather course directors’ views on the definitions and components of commercial awareness and identify what skills and attributes are required for its development. It also evaluated how commercial awareness has been embedded in the real estate courses. The aim of the interview was to gain deeper insight on how components of commercial awareness are embedded in real estate courses and nine interviews were conducted. The interviews were recorded, transcribed and coded to identify similar themes. The frequency of the answer in the questionnaire and comments from interviewees is presented.

Findings

The UK real estate academics agreed the most important definition of commercial awareness as that of a “person's ability on understanding of the economics of business”. They agreed that “strategic” is the most important component for commercial awareness, followed with “financial” and “process”. However, the “financial” component is embedded the most in the curriculum. The most important skill and attribute for commercial awareness development are “ability to define and solve problems” and “ability and willingness to update professional knowledge”, respectively. Commercial awareness was embedded in the overall curriculum and the key element for developing it is through having “practical experience”.

Originality/value

This project is the first to conduct an in-depth analysis of commercial awareness in real estate education. It also develops the pioneer commercial awareness taxonomy.

Details

Property Management, vol. 32 no. 1
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 1 March 2002

D.M. Stubbs, S.H. Pulko and A.J. Wilkinson

Numerical modelling is used to predict the thermal behaviour of embedded passive components in multi‐layer PCBs. A three‐signal layer PCB, containing embedded resistors of…

Abstract

Numerical modelling is used to predict the thermal behaviour of embedded passive components in multi‐layer PCBs. A three‐signal layer PCB, containing embedded resistors of dimensions 0.3 6 0.3mm and thickness 0.1μm, is used to generate thermal design rules that can be applied to a wide range of PCB structures containing embedded passive components. A software package using the design rules can then make fast predictions on the thermal behaviour of heat‐generating components inside such structures.

Details

Circuit World, vol. 28 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 February 2016

Mariusz Wojcik, Dariusz Witek, Tomasz Klej and Edward Ramotowski

The purpose of this paper was to show physical limitation of embedding standard packaging components into printed circuit board (PCB) which is more reasonable technology for small…

Abstract

Purpose

The purpose of this paper was to show physical limitation of embedding standard packaging components into printed circuit board (PCB) which is more reasonable technology for small series productions which is popular in industrial products. Embedding electronic components inside a PCB FR-4 substrate leads to significant size reduction and better heat management. Embedded chip technology is already known in many consumer electronics applications, but it is focused on high volumes and required to order components ready to be embedded.

Design/methodology/approach

Highly integrated DC/DC converter with standard-package electronic parts (passive and active) was embedded inside a PCB structure. The design and the manufacturing process was based on standard PCB FR-4 technology. Sandwich solution was used to integrate all layers together; one of the main investigations was to focus on how to fill space around components to keep internal stresses on very low level.

Findings

There were few considerations during choosing the right concept. The first, which occurred during the first producing round, was the distance between thick copper and inner layer. The second one was the way how to fill space between mounted components on inner layer and isolation laminate. A few trials took place and it is decided that it is impossible to fill this space with resin from prepregs; therefore, a casting compound was used.

Originality/value

Design and manufacturing process which brings 37 per cent of size reduction of complete DC/DC voltage converter PCB with 28.5 W output power comparing to a reference design with standard surface mounted devices (SMD) and copper layout implementation has been achieved during research project.

Details

Circuit World, vol. 42 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 March 2012

Amit Joe Lopes, Eric MacDonald and Ryan B. Wicker

The purpose of this paper is to present a hybrid manufacturing system that integrates stereolithography (SL) and direct print (DP) technologies to fabricate three‐dimensional (3D…

8564

Abstract

Purpose

The purpose of this paper is to present a hybrid manufacturing system that integrates stereolithography (SL) and direct print (DP) technologies to fabricate three‐dimensional (3D) structures with embedded electronic circuits. A detailed process was developed that enables fabrication of monolithic 3D packages with electronics without removal from the hybrid SL/DP machine during the process. Successful devices are demonstrated consisting of simple 555 timer circuits designed and fabricated in 2D (single layer of routing) and 3D (multiple layers of routing and component placement).

Design/methodology/approach

A hybrid SL/DP system was designed and developed using a 3D Systems SL 250/50 machine and an nScrypt micro‐dispensing pump integrated within the SL machine through orthogonally‐aligned linear translation stages. A corresponding manufacturing process was also developed using this system to fabricate 2D and 3D monolithic structures with embedded electronic circuits. The process involved part design, process planning, integrated manufacturing (including multiple starts and stops of both SL and DP and multiple intermediate processes), and post‐processing. SL provided substrate/mechanical structure manufacturing while interconnections were achieved using DP of conductive inks. Simple functional demonstrations involving 2D and 3D circuit designs were accomplished.

Findings

The 3D micro‐dispensing DP system provided control over conductive trace deposition and combined with the manufacturing flexibility of the SL machine enabled the fabrication of monolithic 3D electronic structures. To fabricate a 3D electronic device within the hybrid SL/DP machine, a process was developed that required multiple starts and stops of the SL process, removal of uncured resin from the SL substrate, insertion of active and passive electronic components, and DP and laser curing of the conductive traces. Using this process, the hybrid SL/DP technology was capable of successfully fabricating, without removal from the machine during fabrication, functional 2D and 3D 555 timer circuits packaged within SL substrates.

Research limitations/implications

Results indicated that fabrication of 3D embedded electronic systems is possible using the hybrid SL/DP machine. A complete manufacturing process was developed to fabricate complex, monolithic 3D structures with electronics in a single set‐up, advancing the capabilities of additive manufacturing (AM) technologies. Although the process does not require removal of the structure from the machine during fabrication, many of the current sub‐processes are manual. As a result, further research and development on automation and optimization of many of the sub‐processes are required to enhance the overall manufacturing process.

Practical implications

A new methodology is presented for manufacturing non‐traditional electronic systems in arbitrary form, while achieving miniaturization and enabling rugged structure. Advanced applications are demonstrated using a semi‐automated approach to SL/DP integration. Opportunities exist to fully automate the hybrid SL/DP machine and optimize the manufacturing process for enhancing the commercial appeal for fabricating complex systems.

Originality/value

This work broadly demonstrates what can be achieved by integrating multiple AM technologies together for fabricating unique devices and more specifically demonstrates a hybrid SL/DP machine that can produce 3D monolithic structures with embedded electronics and printed interconnects.

Article
Publication date: 16 September 2020

Kamil Janeczek, Aneta Araźna, Wojciech Stęplewski, Marek Kościelski, Krzysztof Lipiec, Ireneusz Rafalik, Sebastian Karolewski, Dorota Liszewska and Anna Sitek

The purpose of this study is to design and fabricate a simple passive sensor circuitry embedded into a printed circuit board (PCB) and then to examine its properties.

Abstract

Purpose

The purpose of this study is to design and fabricate a simple passive sensor circuitry embedded into a printed circuit board (PCB) and then to examine its properties.

Design/methodology/approach

A passive sensor transponder integrated circuit (IC) working in the high frequency (HF) 13.56 MHz frequency band was selected for this study. A loop antenna was designed to make the reported sensor circuitry readable. Next, the sensor circuitry was fabricated and embedded into a PCB with the proposed technologies. Finally, properties of the embedded structures were examined as well-functional parameters of the sensor circuitries.

Findings

The described investigation results confirmed that the proposed technologies using an epoxy resin or standard materials used for PCB’s production allowed to successfully produce sensors embedded into PCBs. This technology did not have a negative significant impact either on quality of solder joints of the assembled transponder IC or on functional properties of the embedded sensor. Apart from the identification data, the reported sensor can provide information about a selected property of its environment, e.g. temperature when its internal temperature sensitive element is used or other factors with the use of external sensitive elements, such as humidity.

Research limitations/implications

It is planned to carry on the reported investigations to examine other types of sensor circuitries capable of indicating e.g. humidity level and to evaluate influence of the proposed technology on their functional properties.

Practical implications

The reported sensor circuitries can be successfully used in electronic industry in internet of things systems not only to identify monitored electronic devices, but also to control selected parameters of external environment. This creates opportunity to detect device malfunction by detecting local temperature growth or to analyze its environment, which might allow to predict failure of controlled products using radio waves. This advantage seems to be extremely beneficial for applications, such as space, aviation or military, in which embedded sensor systems may lead to enhancing reliability of electronic devices by reacting on occurred failures in a more efficient way.

Originality/value

This study demonstrates valuable information for engineers conducting research on sensor components embedded into PCBs. The reported technologies are quite simple and cost-effective because of the use of standard materials known for PCB’s production or an epoxy resin which could be treated as an additional encapsulant material enhancing mechanical properties of the embedded sensor transponder IC.

Details

Microelectronics International, vol. 37 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 August 2000

D.M. Stubbs, S.H. Pulko, A.J. Wilkinson, B. Wilson, F. Christiaens and K. Allaert

The embedding of passive components such as resistors, capacitors and inductors within printed circuit boards (PCBs) is motivated, to a large extent, by the desire for increased…

Abstract

The embedding of passive components such as resistors, capacitors and inductors within printed circuit boards (PCBs) is motivated, to a large extent, by the desire for increased miniaturisation of electronic goods. However, resistors and, to a lesser extent, inductors are heat generating devices, and the temperature developed within PCBs as the result of the operation of embedded passives is a significant aspect of the design of a multilayer PCB. Here we investigate, by simulation, temperature fields associated with operation of embedded resistors. It is shown that for board dimensions less than 2cm × 2cm temperatures achieved are higher than those associated with larger boards having identical structures and identical resistor heat generation. Detailed simulations are used to investigate the sensitivity of the temperature rises associated with embedded resistors to copper track coverage and to thermal coupling of the PCB to ambient on its upper and lower surfaces. The implications of these findings are discussed both in the context of the design of real PCBs and in the context of thermal simulation.

Details

Microelectronics International, vol. 17 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of over 43000