Search results

1 – 10 of 10
Article
Publication date: 28 June 2013

Rong Wang, Jianye Liu, Zhi Xiong and Qinghua Zeng

The Embedded GPS/INS System (EGI) has been used more widely as central navigation equipment of aircraft. For certain cases needing high attitude accuracy, star sensor can be…

Abstract

Purpose

The Embedded GPS/INS System (EGI) has been used more widely as central navigation equipment of aircraft. For certain cases needing high attitude accuracy, star sensor can be integrated with EGI to improve attitude performance. Since the filtering‐correction loop has already built in finished EGI product, centralized or federated Kalman filter is not applicable for integrating EGI with star sensor; it is a challenge to design multi‐sensor information fusion algorithm suitable for this situation. The purpose of this paper is to present a double‐layer fusion scheme and algorithms to meet the practical need of constructing integrated multi‐sensor navigation system by star sensor assisting finished EGI unit.

Design/methodology/approach

The alternate fusion algorithms for asynchronous measurements and the sequential fusion algorithms for synchronous measurements are presented. By combining alternate filtering and sequential filtering algorithms, a kind of double‐layer fusion algorithms for multi‐sensors is proposed and validated by semi‐physical test in this paper.

Findings

The double‐layer fusion algorithms represent a filtering strategy for multiple non‐identical parallel sensors to assist INS, while the independent estimation‐correction loop in EGI is still maintained. It has significant benefits in updating original navigation system by integrating new sensors.

Practical implications

The approach described in this paper can be used in designing similar multi‐sensor information fusion navigation system composed by EGI and various kinds of sensors, so as to improve the navigation performance.

Originality/value

Compared with conventional approach, in the situation that centralized and federated Kalman filter are not applicable, the double‐layer fusion scheme and algorithms give an external filtering strategy for measurements of finished EGI unit and star sensors.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 18 October 2011

Jungguk Kim, Agus Budiyono, Dong‐Min Kim, Ho‐Geun Song and Doo‐Hyun Kim

The purpose of this paper is to introduce a new danger‐aware Operational Flight Program (OFP) for the unmanned helicopter's auto‐navigation based on the well‐known time‐triggered…

Abstract

Purpose

The purpose of this paper is to introduce a new danger‐aware Operational Flight Program (OFP) for the unmanned helicopter's auto‐navigation based on the well‐known time‐triggered message‐triggered object (TMO) model.

Design/methodology/approach

In this design with the TMO, the danger‐awareness means two things. First, an unmanned helicopter maneuvers on safe altitudes to avoid buildings or mountains when navigating to the target position. It is assumed that minimum safe altitudes are given on evenly spaced grids and on the center points of every four adjacent grids. A three‐dimensional (3D) path‐finding algorithm using this safe‐altitude information is proposed. Second, a helicopter automatically avoids a zone with very high temperature caused by a fire.

Findings

Since the auto‐flight control system requires componentized real‐time processing of sensors and controllers, the TMO model that has periodic and sporadic threads as members, has been used in designing the OFP. It has been found that using the TMO scheme is a way to construct a very flexible, well‐componentized and timeliness‐guaranteed OFP.

Practical implications

As the RTOS, RT‐eCos has been used. It was developed a few years ago based on the eCos3.0 to support the real‐time thread model of the TMO scheme. To verify this navigation system, a hardware‐in‐the‐loop simulation (HILS) system also has been developed.

Originality/value

Designing an OFP by using the real‐time object model TMO and the proposed 3D safe path finding algorithm is a whole new effective deadline‐based approach. And the developed OFP can be used intensively in the phase of disaster response and recovery.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 10 May 2013

Ling Chen, Sen Wang, Klaus McDonald‐Maier and Huosheng Hu

The main purpose of this paper is to investigate two key elements of localization and mapping of Autonomous Underwater Vehicle (AUV), i.e. to overview various sensors and…

2369

Abstract

Purpose

The main purpose of this paper is to investigate two key elements of localization and mapping of Autonomous Underwater Vehicle (AUV), i.e. to overview various sensors and algorithms used for underwater localization and mapping, and to make suggestions for future research.

Design/methodology/approach

The authors first review various sensors and algorithms used for AUVs in the terms of basic working principle, characters, their advantages and disadvantages. The statistical analysis is carried out by studying 35 AUV platforms according to the application circumstances of sensors and algorithms.

Findings

As real‐world applications have different requirements and specifications, it is necessary to select the most appropriate one by balancing various factors such as accuracy, cost, size, etc. Although highly accurate localization and mapping in an underwater environment is very difficult, more and more accurate and robust navigation solutions will be achieved with the development of both sensors and algorithms.

Research limitations/implications

This paper provides an overview of the state of art underwater localisation and mapping algorithms and systems. No experiments are conducted for verification.

Practical implications

The paper will give readers a clear guideline to find suitable underwater localisation and mapping algorithms and systems for their practical applications in hand.

Social implications

There is a wide range of audiences who will benefit from reading this comprehensive survey of autonomous localisation and mapping of UAVs.

Originality/value

The paper will provide useful information and suggestions to research students, engineers and scientists who work in the field of autonomous underwater vehicles.

Details

International Journal of Intelligent Unmanned Systems, vol. 1 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 October 2000

Stephen J. Pinchak and Asok Ray

The goal of the paper is to present an enhancement of the existing on‐board ground collision avoidance system (GCAS) that is designed to increase pilot safety in USAF A‐10…

Abstract

The goal of the paper is to present an enhancement of the existing on‐board ground collision avoidance system (GCAS) that is designed to increase pilot safety in USAF A‐10 aircraft. The A‐10 is a single‐seat, twin‐engine aircraft with a 30mm, seven‐barreled Gatling gun and 11 weapon pylons designed to fly at low level in close air support missions. The GCAS system provides both visual and aural cues for a pilot‐initiated recovery. The proposed algorithm of GCAS enhancement is built on a simple linear regression model that predicts the recovery height of the aircraft following a warning call and allows pilots to compare their own training events with flight test standards. This paper presents a discussion of model development, validation and comparison of the model predictions with actual flight test events. A comparison of recovery techniques and pilot options is included. A series of recommendations and possible usage for Air Force pilot training are also discussed.

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 14 June 2013

Christian Ivancsits and Min‐Fan Ricky Lee

This paper aims to address three major issues in the development of a vision‐based navigation system for small unmanned aerial vehicles (UAVs) which can be characterized as…

1043

Abstract

Purpose

This paper aims to address three major issues in the development of a vision‐based navigation system for small unmanned aerial vehicles (UAVs) which can be characterized as follows: technical constraints, robust image feature matching and an efficient and precise method for visual navigation.

Design/methodology/approach

The authors present and evaluate methods for their solution such as wireless networked control, highly distinctive feature descriptors (HDF) and a visual odometry system.

Findings

Proposed feature descriptors achieve significant improvements in computation time by detaching the explicit scale invariance of the widely used scale invariant feature transform. The feasibility of wireless networked real‐time control for vision‐based navigation is evaluated in terms of latency and data throughput. The visual odometry system uses a single camera to reconstruct the camera path and the structure of the environment, and achieved and error of 1.65 percent w.r.t total path length on a circular trajectory of 9.43 m.

Originality/value

The originality/value lies in the contribution of the presented work to the solution of visual odometry for small unmanned aerial vehicles.

Article
Publication date: 1 April 2000

Richard N. Brenner, Patrick F. Jones, Christopher J. Spratt, Michael T. Schardt and R. Coleen Thornton

The development of the flight station of the C‐130J variant of the C‐130 military airlift aircraft is discussed. The development effort began with research and development…

Abstract

The development of the flight station of the C‐130J variant of the C‐130 military airlift aircraft is discussed. The development effort began with research and development projects in the early 1980s. Following this was a series of related research and technology integration efforts under contract to the US Government in the late 1980s and early 1990s. Finally, detailed design of the C‐130J in a formal development program began in 1992. The technologies that were integrated into the C‐130J flight station that made it possible to reduce the flight station crew from four (pilot, copilot, navigator, and flight engineer) to two (pilot and copilot) are reviewed.

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 4 January 2016

Shashi Poddar, Sajjad Hussain, Sanketh Ailneni, Vipan Kumar and Amod Kumar

The purpose of this paper is to solve the problem of tuning of EKF parameters (process and measurement noise co-variance matrices) designed for attitude estimation using Global…

Abstract

Purpose

The purpose of this paper is to solve the problem of tuning of EKF parameters (process and measurement noise co-variance matrices) designed for attitude estimation using Global Positioning System (GPS) aided inertial sensors by employing a Human Opinion Dynamics (HOD)-based optimization technique and modifying the technique using maximum likelihood estimators and study its performance as compared to Particle Swarm Optimization (PSO) and manual tuning.

Design/methodology/approach

A model for the determination of attitude of flight vehicles using inertial sensors and GPS measurement is designed and experiments are carried out to collect raw sensor and reference data. An HOD-based model is utilized to estimate the optimized process and measurement noise co-variance matrix. Added to it, few modifications are proposed in the HOD model by utilizing maximum likelihood estimator and finally the results obtained by the proposed schemes analysed.

Findings

Analysis of the results shows that utilization of evolutionary algorithms for tuning is a significant improvement over manual tuning and both HOD and PSO-based methods are able to achieve the same level of accuracy. However, the HOD methods show better convergence and is easier to implement in terms of tuning parameters. Also, utilization of maximum likelihood estimator shows better search during initial iterations which increases the robustness of the algorithm.

Originality/value

The paper is unique in its sense that it utilizes a HOD-based model to solve tuning problem of EKF for attitude estimation.

Details

International Journal of Intelligent Unmanned Systems, vol. 4 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 21 June 2013

Ala Al‐Fuqaha, Mohammed Elbes and Ammar Rayes

Outdoor localization is an important issue for many applications, such as autonomous mobile robotics and augmented reality. The purpose of this paper is to propose a budgeted…

Abstract

Purpose

Outdoor localization is an important issue for many applications, such as autonomous mobile robotics and augmented reality. The purpose of this paper is to propose a budgeted dynamic exclusion heuristic based on signal phase shifts from multiple base stations.

Design/methodology/approach

The authors also propose an outdoor localization technique based on the particle filter for data fusion and present an overview of a potential target application of the proposed outdoor localization approach for the blind and visually impaired (BVI).

Findings

The combination of multiple sensor data tends to overcome the drawbacks of using one sensor technology in the localization process.

Originality/value

The novelty of the proposed approach stems from its ability to fuse data collected from different sensor technologies to converge to more accurate position estimation.

Details

International Journal of Pervasive Computing and Communications, vol. 9 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 2 November 2017

Yang Gu, Qian Song, Ming Ma, Yanghuan Li and Zhimin Zhou

Aiding information is frequently adopted to calibrate the errors from inertia-generated trajectories in pedestrian positioning. However, existing calibration methods lack interior…

Abstract

Purpose

Aiding information is frequently adopted to calibrate the errors from inertia-generated trajectories in pedestrian positioning. However, existing calibration methods lack interior connections and unanimity, making it difficult to incorporate multiple sources of aiding information. This paper aims to propose a unanimous anchor-based trajectory calibration framework, which is expandable to encompass different types of anchor information.

Design/methodology/approach

The concept of anchors is introduced to represent different types of aiding information, which are, in essence, different constraint conditions on inertia-derived raw trajectories. The foundation of the framework is a particle filter which is implemented based on various particle weight updating strategies using diverse types of anchor information. Herein, three representative anchors are chosen to elaborate and validate the proposed framework, namely, ultra-wide-band (UWB) ranging anchors, iBeacons and the building structure-based virtual anchors.

Findings

In the simulations, with the particle reweighting strategies of the proposed framework, the positioning errors can be compensated. In the experimental test in an office building in which three anchors, including one UWB anchor, one iBeacon and one building structure-based virtual anchor are deployed; the final positioning error is decreased from 1.9 to 1.2 m; and the heading error is reduced from about 21° to 7°, respectively.

Originality/value

Herein, an anchor-based unanimous trajectory calibration framework for inertial pedestrian positioning is proposed. This framework is applicable to the schemes with different configurations of the anchors and can be expanded to adopt as much anchor information as possible.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 June 2019

Chao Chen, Llewellyn Tang, Craig Matthew Hancock and Penghe Zhang

The purpose of this paper is to introduce the development of an innovative mobile laser scanning (MLS) method for 3D indoor mapping. The generally accepted and used procedure for…

Abstract

Purpose

The purpose of this paper is to introduce the development of an innovative mobile laser scanning (MLS) method for 3D indoor mapping. The generally accepted and used procedure for this type of mapping is usually performed using static terrestrial laser scanning (TLS) which is high-cost and time-consuming. Compared with conventional TLS, the developed method proposes a new idea with advantages of low-cost, high mobility and time saving on the implementation of a 3D indoor mapping.

Design/methodology/approach

This method integrates a low-cost 2D laser scanner with two indoor positioning techniques – ultra-wide band (UWB) and an inertial measurement unit (IMU), to implement a 3D MLS for reality captures from an experimental indoor environment through developed programming algorithms. In addition, a reference experiment by using conventional TLS was also conducted under the same conditions for scan result comparison to validate the feasibility of the developed method.

Findings

The findings include: preset UWB system integrated with a low-cost IMU can provide a reliable positioning method for indoor environment; scan results from a portable 2D laser scanner integrated with a motion trajectory from the IMU/UWB positioning approach is able to generate a 3D point cloud based in an indoor environment; and the limitations on hardware, accuracy, automation and the positioning approach are also summarized in this study.

Research limitations/implications

As the main advantage of the developed method is low-cost, it may limit the automation of the method due to the consideration of the cost control. Robotic carriers and higher-performance 2D laser scanners can be applied to realize panoramic and higher-quality scan results for improvements of the method.

Practical implications

Moreover, during the practical application, the UWB system can be disturbed by variances of the indoor environment, which can affect the positioning accuracy in practice. More advanced algorithms are also needed to optimize the automatic data processing for reducing errors caused by manual operations.

Originality/value

The development of this MLS method provides a novel idea that integrates data from heterogeneous systems or sensors to realize a practical aim of indoor mapping, and meanwhile promote the current laser scanning technology to a lower-cost, more flexible, more portable and less time-consuming trend.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 10