Search results

1 – 10 of 179
Article
Publication date: 14 July 2023

Sweety Poornima Rau Merugu and Manjunath Y.M.

This study aims at designing consistent and durable concrete by making use of waste materials. An investigation has been carried out to evaluate the performance of conventional…

Abstract

Purpose

This study aims at designing consistent and durable concrete by making use of waste materials. An investigation has been carried out to evaluate the performance of conventional and optimal concrete (including 5% GP) at high temperatures for different exposure times.

Design/methodology/approach

An experimental work is carried out to compare the conventional and optimal concrete with respect to weight loss, mechanical strength characteristics (compressive, tensile and flexural) after exposed to 100, 200 and 300 °C with 1, 2 and 3 h duration of exposure followed by cooling in furnace for 24 h and then air cooling.

Findings

The workability of granite powder modified concrete decreases as percentage of replacement increases. Compressive, tensile and flexural strengths all increased at 100 °C when compared to strength characteristics at normal temperature, regardless of the exposure conditions, and there was no weight loss noticed. For 200 and 300 °C, the strengths were decreased compared to normal temperature and an elevated temperature of 100 °C, as weight loss of concrete specimens are observed to be decreased at these temperatures. So, the optimum elevated temperature can be concluded as 100 °C.

Originality/value

Incorporating pozzolanic binder (granite powder) as cement replacement subjecting to elevated temperatures in an electric furnace is the research gap in this area. Many of the works were carried out replacing GP for fine aggregate at normal temperatures and not at elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 December 2023

Bheem Pratap and Pramod Kumar

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Abstract

Purpose

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Design/methodology/approach

The investigation involved studying the influence of partially replacing fly ash with ground granulated blast furnace slag (GGBS) at different proportions (5%, 10%, 15%, 20% and 25%) on the composition of the geopolymer. This approach aimed to examine how the addition of GGBS impacts the properties of the geopolymer material. The chemical NaOH was purchased from the local supplier of Jamshedpur. The alkali solution was prepared with a concentration of 12 M NaOH to produce the concrete. After several trials, the alkaline-to-binder ratio was determined to be 0.43.

Findings

The compressive strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 35.42 MPa, 41.26 MPa, 44.79 MPa, 50.51 MPa and 46.33 MPa, respectively. The flexural strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 5.31 MPa, 5.64 MPa, 6.12 MPa, 7.15 MPa and 6.48 MPa, respectively. The split tensile strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 2.82 MPa, 2.95 MPa, 3.14 MPa, 3.52 MPa and 3.31 MPa, respectively.

Originality/value

This approach allows for the examination of how the addition of GGBS affects the properties of the geopolymer material. Four different temperature levels were chosen for analysis: 100 °C, 300 °C, 500 °C and 700 °C. By subjecting the geopolymer samples to these elevated temperatures, the study aimed to observe any changes in their mechanical.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 31 August 2023

Uche Emmanuel Edike, Olumide Afolarin Adenuga, Daniel Uwumarogie Idusuyi and Abdulkabir Adedamola Oke

The purpose of this study is to advance the application of pulverised cow bone ash (PCBA) as a partial replacement of cement in soil stabilisation for the production of bricks…

Abstract

Purpose

The purpose of this study is to advance the application of pulverised cow bone ash (PCBA) as a partial replacement of cement in soil stabilisation for the production of bricks. The study investigated the impact of PCBA substitution on the characteristic strength of clay bricks under variant curing media.

Design/methodology/approach

Dried cow bones were pulverised, and an energy-dispersive X-ray fluorescence test was conducted on PCBA samples to determine the chemical constituents and ascertain the pozzolanic characteristics. Ordinary Portland cement (OPC) and PCBA were blended at 100%, 75%, 50%, 25% and 0% of cement substitution by mass to stabilise lateritic clay at 10% total binder content for the production of bricks. The binder-to-lateritic clay matrixes were used to produce clay bricks and cylinders for compressive and splitting tensile strength tests, respectively.

Findings

The study found that PCBA and OPC have similar chemical compositions. The strength of the clay bricks increased with curing age, and the thermal curing of clay bricks positively impacted the strength development. The study established that PCBA is a suitable substitute for cement, up to 25% for stabilisation in clay brick production.

Practical implications

Construction stakeholders can successfully use a PCBA-OPC binder blend of 1:3 to stabilise clay at 10% total binder content for the production of bricks. The stabilised clay bricks should be cured at an elevated temperature of approximately 90°C for 48 h to achieve satisfactory performance.

Originality/value

The PCBA-OPC binder blend provides adequate soil stabilisation for the production of clay bricks and curing the clay bricks at elevated temperature. This aspect of the biomass/OPC binder blend has not been explored for brick production, and this is important for the reduction of the environmental impacts of cement production and waste from abattoirs.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 October 2022

Lami Amanuel Erana

The purpose of this research is to develop an environmentally friendly antimicrobial dyeing of cotton fabric from the root of Euclea racemosa. Textile phytochemical finishing is…

28

Abstract

Purpose

The purpose of this research is to develop an environmentally friendly antimicrobial dyeing of cotton fabric from the root of Euclea racemosa. Textile phytochemical finishing is in high demand worldwide because of its low toxicity, low pollution, ease of availability, renewability, pharmacological effects and non-carcinogenic properties, as well as its multifunctionality, rapid process stages and potential health benefit.

Design/methodology/approach

The cotton fabric was dyed with aqueous extracts of Euclea racemosa root dyes. Dyes were extracted for 20 min at pH 7.43 at room and boiling temperatures with material-to-liquor ratios (MLRs) of 1:5, 1:10, 1:15 and 1:20, altering one variable at a time, and the cotton fabric was colored using a post-mordanting procedure at 50°C with an MLR of 1:20. Using a properly cleaned Petri plate, the colored samples were tested in vitro for antibacterial activity. A spectrophotometer was used to assess color strength and shade depth, as well as wash fastness and annual rubbing fastness tests for both wet and dry.

Findings

L* = 36.29, a* = 58.56, b* = 32.46 and K/S = 0.51 were the CIELAB values for dye extracted at boiling temperature. L* = 47.14, a* = 42.23, b* = 49.61 and K/S = 0.38 were the CIELAB values for dye extracted at room temperature. The wash and rubbing fastness of the dyed samples were outstanding and the dyed cotton fabrics were found antibacterial against Gram-negative bacteria Escherichia coli.

Originality/value

Dyes derived from the E. racemosa root could be used to develop a new antibacterial cotton fabric dye.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 January 2024

Thomas Pinger, Mirabela Firan and Martin Mensinger

Based on the known positive effects of conventional hot-dip galvanizing under fire exposure and indicative results on zinc–aluminum coatings from smallscale tests, a series of…

15

Abstract

Purpose

Based on the known positive effects of conventional hot-dip galvanizing under fire exposure and indicative results on zinc–aluminum coatings from smallscale tests, a series of tests were conducted on zinc-5% aluminum galvanized test specimens under fire loads to verify the previous positive findings under largescale boundary conditions.

Design/methodology/approach

The emissivity of zinc-5% aluminum galvanized surfaces applied to steel specimens was determined experimentally under real fire loads and laboratory thermal loads in accordance with the normative specifications of the standard fire curve. Both large and smallscale specimens were used in this study. The steel grade and surface conditions of the specimens were varied for both test scenarios.

Findings

Largescale tests on specimens with typical steel construction dimensions under fire loads showed that the surface emissivity of zinc-5% aluminum galvanized steel was significantly lower than that of the conventionally galvanized steel. Only minor influences from the weathering of the specimens and steel chemistry were observed. These results agree well with those obtained from smallscale tests. The design values of zinc-5% aluminum melt (Zn5Al) required for the structural fire design were proposed based on the obtained results.

Originality/value

The novel tests presented in this study are the first ones to study the behavior of zinc-5% aluminum galvanized largescale steel construction components under the influence of real fire exposure and their positive effect on the emissivity of steel components galvanized by this method. The results provide valuable insights and information on the behavior in the case of fire and the associated savings potential for steel construction.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 December 2023

Akshit Gupta and Urvashi Tandon

The concept of sustainable performance is gaining attention from researchers all over the world for the betterment of society as a whole. Pollution and climate change has…

Abstract

Purpose

The concept of sustainable performance is gaining attention from researchers all over the world for the betterment of society as a whole. Pollution and climate change has instigated an awareness to switch to sustainable built environment. The present research aims to analyze the indicators of adoption of smart buildings and their impact on dimensions of sustainability, namely, economic, social and environmental performance.

Design/methodology/approach

Data was collected from 332 respondents staying in smart buildings. Structural equation modeling was applied to analyze the data.

Findings

The results of the study indicated adoption of smart buildings depicted a stronger perceived sustainable environmental and economic performance while social performance emerged as a weak outcome variable as compared to the other two performances.

Originality/value

The study thus has tremendous implications for construction companies so that they may design smart buildings by adequately using artificial intelligence. To the best of the authors’ knowledge, this research is one of the initial studies to understand the perception of residents of smart buildings using smart technology in India.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 12 December 2023

T.M. Jeyashree and P.R. Kannan Rajkumar

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to…

Abstract

Purpose

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to elevated temperatures during a fire. The fire response of prestressed hollow-core slabs is required to develop slabs with greater fire endurance. The present study aims to determine the extent to which the hollow-core slab can sustain load during a fire without undergoing progressive collapse under extreme fire and heating scenarios.

Design/methodology/approach

A finite element model was generated to predict the fire response of prestressed hollow core slabs under elevated temperatures. The accuracy of the model was predicted by examining thermal and structural responses through coupled temperature displacement analysis. A sensitivity analysis was performed to study the effects of concrete properties on prediction of system response. A parametric study was conducted by varying the thickness of the slab, fire and heating scenarios.

Findings

Thermal conductivity and specific heat of concrete were determined as sensitive parameters. The thickness of the slab was identified as a critical factor at a higher load level. Asymmetric heating of the slab resulted in higher fire resistance compared with symmetric heating.

Originality/value

This is the first study focused on studying the effect of modeling uncertainties on the system response by sensitivity analysis under elevated temperatures. The developed model with a parametric study helps in identifying critical factors for design purposes.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 December 2023

Balamurali Kanagaraj, N. Anand, Johnson Alengaram and Diana Andrushia

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of…

Abstract

Purpose

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of traditional river sand. The aim is to create eco-friendly concrete that mitigates the depletion of conventional river sand and conserves natural resources. Additionally, the study seeks to explore how the moisture content of filler materials affects the performance of GPC.

Design/methodology/approach

SSW obtained from the sodium silicate industry was used as filler material in the production of GPC, which was cured at ambient temperature. Instead of the typical conventional river sand, SSW was substituted at 25 and 50% of its weight. Three distinct moisture conditions were applied to both river sand and SSW. These conditions were classified as oven dry (OD), air dry (AD) and saturated surface dry (SSD).

Findings

As the proportion of SSW increased, there was a decrease in the slump of the GPC. The setting time was significantly affected by the higher percentage of SSW. The presence of angular-shaped SSW particles notably improved the compressive strength of GPC when replacing a portion of the river sand with SSW. When exposed to elevated temperatures, the performance of the GPC with SSW exhibited similar behavior to that of the mix containing conventional river sand, but it demonstrated a lower residual strength following exposure to elevated temperatures.

Originality/value

Exploring the possible utilization of SSW as a substitute for river sand in GPC, and its effects on the performance of the proposed mix. Analyzing, how varying moisture conditions affect the performance of GPC containing SSW. Evaluating the response of the GPC with SSW exposed to elevated temperatures in contrast to conventional river sand.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 179