Search results

1 – 4 of 4
Article
Publication date: 5 May 2021

Dumitru Roman, Neal Reeves, Esteban Gonzalez, Irene Celino, Shady Abd El Kader, Philip Turk, Ahmet Soylu, Oscar Corcho, Raquel Cedazo, Gloria Re Calegari, Damiano Scandolari and Elena Simperl

Citizen Science – public participation in scientific projects – is becoming a global practice engaging volunteer participants, often non-scientists, with scientific research…

Abstract

Purpose

Citizen Science – public participation in scientific projects – is becoming a global practice engaging volunteer participants, often non-scientists, with scientific research. Citizen Science is facing major challenges, such as quality and consistency, to reap open the full potential of its outputs and outcomes, including data, software and results. In this context, the principles put forth by Data Science and Open Science domains are essential for alleviating these challenges, which have been addressed at length in these domains. The purpose of this study is to explore the extent to which Citizen Science initiatives capitalise on Data Science and Open Science principles.

Design/methodology/approach

The authors analysed 48 Citizen Science projects related to pollution and its effects. They compared each project against a set of Data Science and Open Science indicators, exploring how each project defines, collects, analyses and exploits data to present results and contribute to knowledge.

Findings

The results indicate several shortcomings with respect to commonly accepted Data Science principles, including lack of a clear definition of research problems and limited description of data management and analysis processes, and Open Science principles, including lack of the necessary contextual information for reusing project outcomes.

Originality/value

In the light of this analysis, the authors provide a set of guidelines and recommendations for better adoption of Data Science and Open Science principles in Citizen Science projects, and introduce a software tool to support this adoption, with a focus on preparation of data management plans in Citizen Science projects.

Details

Data Technologies and Applications, vol. 55 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Open Access
Article
Publication date: 17 October 2019

Qiong Bu, Elena Simperl, Adriane Chapman and Eddy Maddalena

Ensuring quality is one of the most significant challenges in microtask crowdsourcing tasks. Aggregation of the collected data from the crowd is one of the important steps to…

1346

Abstract

Purpose

Ensuring quality is one of the most significant challenges in microtask crowdsourcing tasks. Aggregation of the collected data from the crowd is one of the important steps to infer the correct answer, but the existing study seems to be limited to the single-step task. This study aims to look at multiple-step classification tasks and understand aggregation in such cases; hence, it is useful for assessing the classification quality.

Design/methodology/approach

The authors present a model to capture the information of the workflow, questions and answers for both single- and multiple-question classification tasks. They propose an adapted approach on top of the classic approach so that the model can handle tasks with several multiple-choice questions in general instead of a specific domain or any specific hierarchical classifications. They evaluate their approach with three representative tasks from existing citizen science projects in which they have the gold standard created by experts.

Findings

The results show that the approach can provide significant improvements to the overall classification accuracy. The authors’ analysis also demonstrates that all algorithms can achieve higher accuracy for the volunteer- versus paid-generated data sets for the same task. Furthermore, the authors observed interesting patterns in the relationship between the performance of different algorithms and workflow-specific factors including the number of steps and the number of available options in each step.

Originality/value

Due to the nature of crowdsourcing, aggregating the collected data is an important process to understand the quality of crowdsourcing results. Different inference algorithms have been studied for simple microtasks consisting of single questions with two or more answers. However, as classification tasks typically contain many questions, the proposed method can be applied to a wide range of tasks including both single- and multiple-question classification tasks.

Details

International Journal of Crowd Science, vol. 3 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

Article
Publication date: 20 August 2019

Marçal Mora-Cantallops, Salvador Sánchez-Alonso and Elena García-Barriocanal

The purpose of this paper is to review the current status of research on Wikidata and, in particular, of articles that either describe applications of Wikidata or provide…

1323

Abstract

Purpose

The purpose of this paper is to review the current status of research on Wikidata and, in particular, of articles that either describe applications of Wikidata or provide empirical evidence, in order to uncover the topics of interest, the fields that are benefiting from its applications and which researchers and institutions are leading the work.

Design/methodology/approach

A systematic literature review is conducted to identify and review how Wikidata is being dealt with in academic research articles and the applications that are proposed. A rigorous and systematic process is implemented, aiming not only to summarize existing studies and research on the topic, but also to include an element of analytical criticism and a perspective on gaps and future research.

Findings

Despite Wikidata’s potential and the notable rise in research activity, the field is still in the early stages of study. Most research is published in conferences, highlighting such immaturity, and provides little empirical evidence of real use cases. Only a few disciplines currently benefit from Wikidata’s applications and do so with a significant gap between research and practice. Studies are dominated by European researchers, mirroring Wikidata’s content distribution and limiting its Worldwide applications.

Originality/value

The results collect and summarize existing Wikidata research articles published in the major international journals and conferences, delivering a meticulous summary of all the available empirical research on the topic which is representative of the state of the art at this time, complemented by a discussion of identified gaps and future work.

Details

Data Technologies and Applications, vol. 53 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

Open Access
Article
Publication date: 31 July 2021

Taro Aso, Toshiyuki Amagasa and Hiroyuki Kitagawa

The purpose of this paper is to propose a scheme that allows users to interactively explore relations between entities in knowledge bases (KBs). KBs store a wide range of…

Abstract

Purpose

The purpose of this paper is to propose a scheme that allows users to interactively explore relations between entities in knowledge bases (KBs). KBs store a wide range of knowledge about real-world entities in a structured form as (subject, predicate, object). Although it is possible to query entities and relations among entities by specifying appropriate query expressions of SPARQL or keyword queries, the structure and the vocabulary are complicated, and it is hard for non-expert users to get the desired information. For this reason, many researchers have proposed faceted search interfaces for KBs. Nevertheless, existing ones are designed for finding entities and are insufficient for finding relations.

Design/methodology/approach

To this problem, the authors propose a novel “relation facet” to find relations between entities. To generate it, they applied clustering on predicates for grouping those predicates that are connected to common objects. Having generated clusters of predicates, the authors generated a facet according to the result. Specifically, they proposed to use a couple of clustering algorithms, namely, agglomerative hierarchical clustering (AHC) and CANDECOMP/PARAFAC (CP) tensor decomposition which is one of the tensor decomposition methods.

Findings

The authors experimentally show test the performance of clustering methods and found that AHC performs better than tensor decomposition. Besides, the authors conducted a user study and show that their proposed scheme performs better than existing ones in the task of searching relations.

Originality/value

The authors propose a relation-oriented faceted search method for KBs that allows users to explore relations between entities. As far as the authors know, this is the first method to focus on the exploration of relations between entities.

Details

International Journal of Web Information Systems, vol. 17 no. 6
Type: Research Article
ISSN: 1744-0084

Keywords

1 – 4 of 4